• Title/Summary/Keyword: Microbial pest control

Search Result 25, Processing Time 0.024 seconds

Influence of Pre-treated Eco-friendly Agricultural Materials on Control Efficacy of Isaria javanica Isolate against Sweet Potato Whitefly (Bemisia tabaci) (친환경 농자재와 곤충병원성 곰팡이 Isaria javanica의 처리 간격이 담배가루이(Bemisia tabaci) 방제에 미치는 영향)

  • Lee, Byung-Ju;Han, Ji-Hee;Huang, Jeong-Hwa;Kim, Jeong-Jun;Lee, Sang-Yeob
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.631-642
    • /
    • 2017
  • For effective control of insect pest which can outbreak in a field during crop cultivation, various control agents such as eco-friendly agricultural materials (EFAM) including microbial control agents and chemical pesticides have been applied at fields and these control agents may be treated simultaneous or sequential in the same field to suppress diverse pests and diseases. The agents may influence each other and control efficacy may also differ from interactions. Therefore we need to test compatibility of microbial control agents with other agricultural agents. In this study, we investigated influence of pre-treated EFAMs, which are registered for whitefly control in greenhouse, on germination, mycelial growth and control efficacy of Isaria javanica isolate against sweet potato whitefly. The results showed that a mixture of paraffin oil+cinnamon oil among 4 EFAMs highly reduced germination ($8.9{\pm}1.3%{\sim}24.5{\pm}0.9%$) and mycelial growth ($0.81{\pm}0.01cm{\sim}0cm$) of I. javanica. To investigate the effects of the treatment interval between EFAMs and I. javanica on sweet potato whitefly control, four different EFAMs were pre-treated 0, 1, 4, and 7 days before applying I. javanica. Pre-treatment of four EFAMs inhibited insecticidal activity of I. javanica against sweet potato whitefly. Therefore when EFAMs and a mycopesticide using I. javanica spray simultaneous or sequential, application of EFAMs need more than 7 days interval after treatment of mycopesticide at field.

Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana

  • Kim, Jeong Jun;Jeong, Gayoung;Han, Ji Hee;Lee, Sangyeob
    • Mycobiology
    • /
    • v.41 no.4
    • /
    • pp.221-224
    • /
    • 2013
  • Aphids are one of the most destructive pests in crop production such as pepper, cucumber, and eggplants. The importance of entomopathogenic fungi as alternative pest control agents is increasing. Conidia of entomopathogenic fungi are influenced by environmental conditions, such as temperature and relative humidity, and cause slow and fluctuating mortality. These factors have prevented wider application and use of biocontrol agents. For investigation of means of mitigation of such problems, we conducted bioassays with 47 fungal culture filtrates in order to evaluate the potential of secondary metabolites produced by entomopathogenic fungi for use in aphid control. Among 47 culture filtrates cultured potato dextrose broth, filtrate of Beauveria bassiana Bb08 showed the highest mortality (78%) against green peach aphid three days after treatments. Filtrate of Bb08 cultured in Adamek's medium showed higher toxicity as 100% to third instar nymphs of the aphid compared with seven other filtrates cultured in different broths amended with colloidal chitin or oil. The culture filtrates and fungal cultures from media amended with colloidal chitin or oil had lower control efficacies than filtrates without these additives in three different media. These results indicate that the fungal culture fluid or culture filtrate of B. bassiana Bb08 cultured in Adamek's medium has potential for development as a mycopesticide for aphid control.

A Highly Pathogenic Strain of Bacillus thuringiensis serovar kurstaki in Lepidopteran Pests

  • Kati, Hatice;Sezen, Kazim;Nalcacioglu, Remziye;Demirbag, Zihni
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.553-557
    • /
    • 2007
  • In order to detect and identify the most toxic Bacillus thuringiensis strains against pests, we isolated a B. thuringiensis strain (Bn1) from Balaninus nucum (Coleoptera: Curculionidae), the most damaging hazelnut pest. Bn1 was characterized via morphological, biochemical, and molecular techniques. The isolate was serotyped, and the results showed that Bn1 was the B. thuringiensis serovar, kurstaki (H3abc). The scanning electron microscopy indicated that Bn1 has crystals with cubic and bipyramidal shapes. The Polymerase Chain Reactions (PCRs) revealed the presence of the cry1 and cry2 genes. The presence of Cry1 and Cry2 proteins in the Bn1 isolate was confirmed via SDS-PAGE, at approximately 130 kDa and 65 kDa, respectively. The bioassays conducted to determine the insecticidal activity of the Bn1 isolate were conducted with four distinct insects, using spore-crystal mixtures. We noted that Bn1 has higher toxicity as compared with the standard B. thuringiensis subsp. kurstaki (HD-1). The highest observed mortality was 90% against Malacosoma neustria and Lymantria dispar larvae. Our results show that the B. thuringiensis isolate (Bn1) may prove valuable as a significant microbial control agent against lepidopteran pests.

Causal Pathogenesis on the Silkworm, Bombyx mori, Associated with Entomopathogenic Nematoda (곤충 병원성 선충에 의한 집누에 감염증과 병인론적 발병생리)

  • 한상미;남기수;한명세
    • Journal of Sericultural and Entomological Science
    • /
    • v.40 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • Entomopathogenic nematodes, Heterorhabditidae and Steinernematidae, were isolated from the soil of mulberry field, and the high infectivity and invesiveness were confirmed in the silkworm, Bombyx mori. The cause of non-microbial and acute flacherie was found as an disease by infection with soil-born nematodes through the mulberry leaves contaminated with soil and rainwater. The causal nematodes were isolated by silkworm trap from all of the 5 soil samples collected on the 5 mulberry fields, and identified as 3 strains of Heterorhabditis sp. and 2 of Steinernema sp. Rainwater itself, however, wasn't engaged in the silkworm disease, mulberry leaves with rainwater was rather profitable for cocoon production when the leaf quality was too hard to feed silkworm. Feeding of wet mulberry leaves with rain might not so harm to silkworm when the condition of rearing room to be kept at suitable temperature and ventilated well. Nematode infection of silkworm could be occurred by harvesting and feeding of contaminated mulberry leaves on the weather condition of rainy and wind. For the prevention of nematode infection, silkworms should be fed the leaves harvested from the higher portion of the mulberry tree in rainy days. For an oppositional application of this susceptibility of silkworms to nematode, might be useful on the collection and amplification of nematode agents for biotic control of pest insects.

  • PDF

Effect of Gamma Irradiation and Fumigation on the Biological Qualities of Green, Black, and Oolong Teas

  • Kwon, Joong-Ho;Kausar, Tusneem;Kwon, Yong-Jung;Kim, Jung-Ae;Huh, Eun-Youp;Lee, Kyeong-Yeoll;Saeed, Shafqat
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The biological qualities of green, black, and oolong teas were monitored by observing their microbial decontamination and insect disinfestation following gamma irradiation (0-10 kGy) and fumigation (MeBr or $PH_3$) during 6-month storage at room temperature. Plodia interpunctella Hubner was found as an important quarantine pest in teas used. In a comparative study, both treatments were found to be effective in disinfecting the stored samples. An irradiation dose of 5 kGy was sufficient to control all microorganisms related to the quality of teas, while fumigation with methyl bromide and phosphine showed no appreciable decontamination effect on the microorganisms. As a result, irradiation was found an effective alternative to fumigants for the improvement of biological tea qualities during storage.

Turfgrass Insect Pests and Natural Enemies in Golf Courses (골프장 잔디 해충과 천적의 종류)

  • 추호렬;이동운;이상명;이태우;최우근;정영기;성영탁
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.171-179
    • /
    • 2000
  • - Turfgrass insect pests and natura.l enemies for biological control were investigated to develop pest management effectively in golf courses at several golf clubs. Twenty eight insect pest species of 10 families in 6 orders were collected from golf courses. The zoysiagrass mite, Eriophyes zoysiae and root-knot nematode, Meloidogyne incognita were also collected from zoysiagrass. White grubs of several scarab beetles and cutworms (Agrotis spp.) damaged seriously at most surveyed golf clubs. In addition, bluegrass webworm (Crambus sp.), Japanese lawngrass cutworm (Spodoptera depravata), scale insects, Tipula sp., and ants (Camponitus japonicus, Formica japonica, and Lasins japonicus) damaged turfgrasses directly or indirectly in golf courses. The entomopathogenic nematodes, Heterorhabditis spp., Steinernema glaseri, and S. longicaudum, entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, and milky disease, Paenibacil/us popil/iae were isolated from white grubs or turfgrass soil as microbial control agents. Besides, dipteran predators, Cophinopoda chinensis, Philonicus albiceps, and Promachus yesonicus and hymenopteran parasitoid, Tiphia sp. were also collected. The P. yesonicus was the most active in golf courses. The root-knot nematode, M. incognita was found from Zoysia japonica, Z. matrella. and Cynodon dactylon.

  • PDF

A Study on the Investigation and Application of Microbial Pathogens of Major Insect Pests of Forest in Korea (중요산림해충의 병원미생물 개발에 관한 연구)

  • Park Chang-Suk;Cho Yong Sup
    • Korean journal of applied entomology
    • /
    • v.18 no.4 s.41
    • /
    • pp.161-167
    • /
    • 1979
  • The study has been carried to investigate a possibility to control several major insect pest of forest by microbial pathogens existing in nature as one of the biological control measure. Microorganisms including polyhedral virus isolated from diseased fall webworm were total of 4 kinds pathogenic microbes among these 4 kinds were polyhedral virus and Bacillus .species. Control effect of these two pathogens appeared to be $70.6\%$ and $49.5\%$, respectively, when they were compared with those of control plot that was $27.8\%$. Each one of bacterium species and fungus species were isolated from diseased Japanese alder leaf beetle. Pathogenisity to the healthy beetle was recognized by the fungus species, while the bacterium showed none of pathogenisity. The fungus was identified as Beauveria sp. and its effect on the beetle control was $96.2\%$ while untreated plot showed $49.2\%$ of dead beetles in the same period. Fifteen species of microbes were isolated from diseased larvae of pine gall midge. Six species out of 15 showed certain level of insecticidal effect to the larvae of the insects. The highest efficiency was showed by a fungus species, Fusarium sp. and was followed by Bacillus SP. I, Spicaria sp. pathogens isolated from larvae of pine gall midge did not affected to both of Japanese alder leaf beetles and fall webworms in any means.

  • PDF

Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul;Choi, Jae-Young;Li, Ming-Sung;Jin, Byung-Rae;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.547-559
    • /
    • 2007
  • Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

Influence of Germination Triggers on Control Efficacy of an Entomopathogenic Fungus Beauveria bassiana against Myzus persicae (곤충병원성 곰팡이 Beauveria bassiana 포자 발아촉진제가 복숭아혹진딧물 살충효과에 미치는 영향)

  • Kim, Jeong-Jun;Zhu, Hong;Seok, Soon-Ja;Lee, Sang-Yeob
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.256-258
    • /
    • 2011
  • This study was conducted to investigate agents inducing conidial germination of an entomopathogenic fungus, Beauveria bassiana KK5. Different chemicals including carbohydrates were mixed with conidia of B. bassiana and incubated on water agar for 12 hours. Fructose, mannose and skim milk were useful for spore germination compared to other chemicals. Bioassays against green peach aphids were conducted with the fungal conidia suspended in 1% fructose, mannose and skim milk. Of them, a mixture of skim milk plus conidia of B. bassiana KK5 showed the highest mortalities against $3^{rd}$ instar of green peach aphid.

Enhanced Degradation of Residual Cadusafos in Soils by the Microbial Agent of Cadusafos-degrading Sphingobium sp. Cam5-1 (미생물제(Sphingobium sp. Cam5-1) 처리에 따른 토양 중 카두사포스의 분해효과)

  • Jehyeong Yeon;Joon-hui Chung;Han Suk Choi;Young-Joon Ko;Dayeon Kim;Sihyun An;Jae-Hyung Ahn;Gui Hwan Han;Hang-Yeon Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.346-352
    • /
    • 2023
  • Cadusafos, an organophosphorus insecticide, has been commonly used against various pests worldwide. Organophosphorus pesticides have shorter half-lives and lower toxicities than organochlorine pesticides. However, excessive use of Cadusafos can increase pest resistance and issues with acetylcholine biomagnification, potentially resulting in human toxicity. In this study, we investigated the effect of a Cadusafos-degrading microbial agent (CDMA) prepared using Sphingobium sp. Cam5-1, which was previously reported to effectively degrade residual Cadusafos in soil. Experiments were conducted under both controlled laboratory and greenhouse field conditions. Under laboratory conditions, CDMA (106 cfu/g soil application rate) decomposed 97% of Cadusafos in the soil in the untreated control after 21 days. Additionally, when CDMA (106 cfu/g soil) was mixed with quicklime, 99% of Cadusafos was decomposed within 3 days. Under greenhouse field conditions, the combined effect of CDMA (106 cfu/g soil) and quicklime was not observed. However, CDMA (106 cfu/g soil) application alone was capable of decomposing 91% of Cadusafos after 3 days. These results indicate that CDMA can effectively decompose high residual levels of Cadusafos in soils under field conditions using a low inoculum rate.