• 제목/요약/키워드: Microbial conversion

검색결과 193건 처리시간 0.031초

Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects

  • Jung, Jieun;Jang, Hye Ji;Eom, Su Jin;Choi, Nam Soon;Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.20-26
    • /
    • 2019
  • Background: Ginsenosides, which are bioactive components in ginseng, can be converted to smaller compounds for improvement of their pharmacological activities. The conversion methods include heating; acid, alkali, and enzymatic treatment; and microbial conversion. The aim of this study was to determine the bioconversion of ginsenosides in fermented red ginseng extract (FRGE). Methods: Red ginseng extract (RGE) was fermented using Lactobacillus plantarum KCCM 11613P. This study investigated the ginsenosides and their antioxidant capacity in FRGE using diverse methods. Results: Properties of RGE were changed upon fermentation. Fermentation reduced the pH value, but increased the titratable acidity and viable cell counts of lactic acid bacteria. L. plantarum KCCM 11613P converted ginsenosides $Rb_2$ and $Rb_3$ to ginsenoside Rd in RGE. Fermentation also enhanced the antioxidant effects of RGE. FRGE reduced 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and reducing power; however, it improved the inhibition of ${\beta}$-carotene and linoleic acid oxidation and the lipid peroxidation. This suggested that the fermentation of RGE is effective for producing ginsenoside Rd as precursor of ginsenoside compound K and inhibition of lipid oxidation. Conclusion: This study showed that RGE fermented by L. plantarum KCCM 11613P may contribute to the development of functional food materials.

갈색부후균의 효소시스템을 이용한 목질계 바이오매스의 효소당화 (Enzymatic sccharification of lignocellulosic biomass by enzyme system of brown-rot fungi)

  • 윤정준;차창준;김영숙;김영균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.529-532
    • /
    • 2006
  • Recently the production of ethanol from lignocecllulosics has received much attention due to immense potential for conversion of renewable biometerials into biofuels and chemicals. Fomitopsis palustris causes a typycal brown-rot and is unusual in that it rapidly depolymerize the cellulose in wood without removing the surrounding lignin that normally prevents microbial attack. This study demonstrated that the brown rot basidiomycete F. palustris was able to degrade crystalline cellulose. This fungus could also produce the three major cellulases (BGL, EXG and EG) when the cells were grown on 2.0% Avicel. The fungus was able to degrade both the crystalline and amorphous forms of cellulose from woody biomasses. Moreover, we found that this fungus has the processive EG like CBH which are able to degrade the crystalline region of cellulose. To establish the cellulase system in relation with degradation of woody biomass, we performed that purification, characterization and molecular cloning of a BGL, EGs and GLA from F. palustris grown on Avicel.

  • PDF

A Method for Quantitative Determination of 17 Ketosteroids from Cholesterol Fer-mentation Broth

  • Lee, Kang-Man;Bae, Moo
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1979년도 춘계학술대회
    • /
    • pp.116-116
    • /
    • 1979
  • In the experiment of cholesterols and steroidal compounds. gas chromatography has been widely used to determine the compounds. Without the facility, we could determine the amount of 17-ketosteroids in the use of t. 1. c technique. In the muicrobial conversion of cholesterol to 17-ketsoteroids, $\alpha,$ $\alpha'-dipyridyl$ which might be a inhibitor of $9\alpha-hydroxylase$ of steroid skeleton was added to microbial culture broth. The inhibitor contaminated due to its solubility in organic solvents and hindered the determination of 17-ketost eroids on t.1. c in all the process of the experiment. we successfully determined the 17-ketosteroids by the use of Ag$^{+}$ band on t. 1. c. plate.e.

  • PDF

In vitro Anti-fungal Activity of Various Hydroxylated Fatty Acids Bioconverted by Pseudomonas aeruginosa PR3

  • Bajpai Vivek K.;Kim, Hak-Ryul;Kang, Sun-Chul
    • Journal of Applied Biological Chemistry
    • /
    • 제49권4호
    • /
    • pp.131-134
    • /
    • 2006
  • The in vitro anti-fungal activity of hydroxylated fatty acids obtained from microbial conversion by Psuedomonas aeruginosa PR3 using ricinoleic acid(RA), eicosadienoic acid(EDA) and conjugated linoleic acid(CLA) as substrates, was investigated. Bioconverted hydroxylated fatty acids showed different anti-fungal activities potentials against the range of phytopathogenic fungi such as Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Sclerotonia sclerotiorum, Colletotricum capsici, Fusarium solani and Phytophthora capsici. RA and EDA showed up to 50% fungal mycelial inhibition at the concentration of $5{\mu}l\;ml^{-1}$. RA, EDA and CLA also exhibited anti-fungal activities with minimum inhibitory concentration(MIC), ranging from 500 to $1000{\mu}g\;ml^{-1}$. Screening was also carried out using varied concentrations of bioconverted RA and EDA for determining the anti-fungal effect on the spore germination of different fungi. Bioconverted RA and EDA showed a considerable degree of spore germination inhibition.

In vivo control of phytopathogens by using omega-3 fatty acid docosahexaenoic acid (DHA) bioconverted by Pseudomonas aeruginosa PR3

  • Kang, Sun-Chul;Kim, Hak-Ryul;Shin, Seung-Yong;Bajpai, Vivek K.
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.497-499
    • /
    • 2005
  • Bioconverted hydroxy fatty acid, docosahexaenoic (bDHA) obtained from the microbial conversion by Pseudomonas aeruginosa PR3 was evaluated for its in vivo anti-fungal activity. bDHA showed great potential of anti-fungal activity against phytopathogenic fungi tested in this study. bDHA at the concentration of 500 ${\mu}g/ml.$ showed remarkable anti-fungal activity against all the fungus tested.

  • PDF

바이오 기반 경제를 위한 해조류 유래 바이오 연료 생산 (Biofuel production from macroalgae toward bio-based economy)

  • 임현규;곽동훈;정규열
    • 한국해양바이오학회지
    • /
    • 제6권1호
    • /
    • pp.8-16
    • /
    • 2014
  • Macroalgae has been strongly touted as an alternative biomass for biofuel production due to its higher photosynthetic efficiency, carbon fixation rate, and growth rate compared to conventional cellulosic plants. However, its unique carbohydrate composition and structure limits the utilization efficiency by conventional microorganisms, resulting in reduced growth rates and lower productivity. Nevertheless, recent studies have shown that it is possible to enable microorganisms to utilize various sugars from seaweeds and to produce some energy chemicals such as methane, ethanol, etc. This paper introduces the basic information on macroalgae and the overall conversion process from harvest to production of biofuels. Especially, we will review the successful efforts on microbial engineering through metabolic engineering and synthetic biology to utilize carbon sources from red and brown seaweed.

Protection of Saururus Chinensis Extract against Liver Oxidative Stress in Rats of Triton WR-1339-induced Hyperlipidemia

  • Kwon, Ryun Hee;Ha, Bae Jin
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.291-296
    • /
    • 2014
  • Saururus chinensis has been reported to contain compounds such as lignans, alkaloids, diterpenes, flavonoids, tannins, steroids, and lipids. Fermentation is commonly used to break down certain undesirable compounds, to induce effective microbial conversion, and to improve the potential nutraceutical values. Previous studies have reported that the fermentation process could modify naturally occurring constituents, including isoflavons, saponins, phytosterols, and phenols, and could enhance biological activities, specifically antioxidant and antimicrobial properties. The probiotic strains used for fermentation exert beneficial effects and are safe. In this study, the antioxidative effects of the Bacillus subtilis fermentation of Saururus chinensis were investigated in a rat model with Triton WR-1339-induced hyperlipidemia by comparing the measured antioxidative biological parameters of fermented Saururus chinensis extract to those of nonfermented Saururus chinensis extract. Fermentation played a more excellent role than nonfermentation in ultimately protecting the body from oxidative stress in the liver of the experimental rats with Triton WR-1339-induced hyperlipidemia.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • 센서학회지
    • /
    • 제32권4호
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

인삼 근권 토양에서 분리한 Stenotrophomonas sp. 4KR4의 Ginsenoside Rb1 전환능 및 분류학적 특성 (Conversion of Ginsenoside Rb1 and Taxonomical Characterization of Stenotrophomonas sp. 4KR4 from Ginseng Rhizosphere Soil)

  • 전인화;조건영;한송이;유선균;황경숙
    • 미생물학회지
    • /
    • 제49권4호
    • /
    • pp.369-376
    • /
    • 2013
  • 인삼 근계(근권, 근면, 근내부)로부터 ginsenoside Rb1 전환효소인 ${\beta}$-glucosidase 생산 균주(BGB)를 분리하였다. 인삼 근계부터 분리된 BGB 28균주의 계통학적 특성을 확인한 결과, 근권에서 Stenotrophomonas 속(3균주), Pseudoxanthomonas 속(1균주), Bacillus 속(1균주)로 확인되었다. 근면로부터 분리된 BGB는 Stenotrophomonas 속(16균주), Streptomyces 속(1균주), Microbacterium 속(1균주)이며, 근내부는 Stenotrophomonas 속(3균주), Lysobacter 속(2균주)를 포함하는 다양한 계통군이 확인 되었다. 특히 인삼 근계로부터 분리된 BGB 균주의 90%가 Stenotrophomonas 계통군에 속하는 특징을 나타내었다. 근권으로부터 분리된 4KR4 균주는 108.17 unit의 ${\beta}$-glucosidase 활성을 나타내었으며, ginsenoside Rb1을 Rd, Rg3 그리고 minor ginsenoside Rh2로 전환되었다. 4KR4 균주는 Stenotrophomonas rhizophila e-$p10^T$ (AJ293463)와 99.65%의 높은 상동성을 나타내었다. 본 연구에서 분리된 ginsenoside 전환세균 4KR4 균주의 계통학적 위치와 표현형적 특징, 균체 지방산조성, 생리 생화학적 특성을 검토한 결과, Stenotrophomonas sp. 4KR4 (=KACC 17635) 균주로 확인되었다.

단양주 방법으로 제조된 막걸리의 발효과정 중 초고압 처리에 의한 미생물적 및 이화학적 특성 변화 (Changes in Microbial and Physicochemical Properties of Single-Brewed Makgeolli by High Hydrostatic Pressure Treatment during Fermentation)

  • 하수정;양승국;인예원;김윤지;오세욱
    • 한국식품영양과학회지
    • /
    • 제41권8호
    • /
    • pp.1176-1181
    • /
    • 2012
  • 본 연구는 초고압 처리가 발효 중인 막걸리의 이화학적 및 미생물적 특성에 미치는 영향을 파악하기 위하여 실시하였다. 초고압은 막걸리 숙성 0일째부터 2일 간격으로 총 6일까지의 시료에 대하여 400 MPa 압력으로 5분간 실시하였다. 그 결과, 초고압 처리로 젖산균은 5~6 log 수준으로 감소하였으며 이후 일정기간이 경과한 후에 다시 약 3~6 log cfu/mL 수준으로 출현하였다. 효모도 마찬가지로 5~6 log 수준으로 검출한계 이내로 감소하였지만 숙성완료 시점까지 다시 출현하지는 않았다. 초고압을 처리한 막걸리는 알코올 생성이 정지되는 것으로 나타났으며 특히 0일차와 2일차에 처리한 시료는 알코올이 거의 생성되지 않았다. 초고압 처리는 젖산균을 사멸시켜 pH와 적정산도에 영향을 미쳤다. 특히 2일차 초고압 처리 막걸리는 젖산균이 사멸되어 pH가 저하되지 않았으며 또한 적정산도도 낮게 나타났다. 환원당 함량의 경우 0일차 처리구는 효모에 의한 알코올 전환이 일어나지 않아 계속적으로 환원당이 증가하여 6일째 8.99%에 달하였으며 2일차 처리구는 효모가 살균되어 환원당이 알코올로 효율적으로 전환되지 못하여 5.01%를 나타내었다. 초고압을 처리하지 않은 처리구는 1.53%를 나타내었다. 결론적으로 발효과정 중 막걸리에 대한 초고압 처리는 발효 미생물의 변화를 유발하여 이화학적 특성 및 미생물적 특성에 영향을 미침을 알 수 있었으며 최종적으로 막걸리 품질에도 영향을 미칠 수 있을 것이라고 생각되었다.