• Title/Summary/Keyword: Microbial Synthesis

Search Result 256, Processing Time 0.022 seconds

Bioconversion of Rare Sugars by Isomerases and Epimerases from Microorganisms (미생물 유래 당질관련 이성화효소 및 에피머효소를 이용한 희소당 생물전환)

  • Kim, Yeong-Su;Kim, Sang Jin;Kang, Dong Wook;Park, Chang-Su
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1545-1553
    • /
    • 2018
  • The International Society of Rare Sugars (ISRS) defines rare sugars as monosaccharides and their derivatives that rarely occur in nature. Rare sugars have recently received much attention because of their many uses including low-calorie sweeteners, bulking agents, and antioxidants, and their various applications including as immunosuppressants in allogeneic rat liver transplantation, as potential inhibitors of various glycosidases and microbial growth, in ischemia-reperfusion injury repair in the rat liver, and in segmented neutrophil production without detrimental clinical effects. Because they rarely exist in nature, the production of rare sugars has been regarded as one of the most important research areas and, generally, they are produced by chemical synthesis. However, the production of rare sugars by bioconversion using enzymes from microorganisms has been receiving increased attention as an environmentally friendly alternative production method. In particular, D-allulose, D-allose, and D-tagatose are of interest as low-calorie sweeteners in various industries. To date, D-tagatose 3-epimerase, D-psicose 3-epimerase, and D-allulose 3-epimerase have been reported as D-allulose bioconversion enzymes, and L-rhamnose isomerase, Galactose 6-phosphate isomerase, and Ribose 5-phosphate isomerase have been identified as D-allose production enzymes. Elsewhere, D-tagatose has been produced by L-arabinose isomerase from various microorganisms. In this study, we report the production of D-allulose, D-allose, and D-tagatose by microorganism enzymes.

Development of Functional Halogenated Phenylpyrrole Derivatives (기능성 할로겐화 페닐피롤 )

  • Min-Hee Jung;Hee Jeong Kong;Young-Ok Kim;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.842-850
    • /
    • 2023
  • Pyrrolnitrin, pyrrolomycin, and pyoluteorin are functional halogenated phenylpyrrole derivatives (HPDs) derived from microorganisms with diverse antimicrobial activities. Pyrrolnitrin is a secondary metabolite produced from L-tryptophan through four-step reactions in Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica, etc. It is currently used for the treatment of superficial dermatophytic fungal infections, has high antagonistic activities against soil-borne and foliar fungal infections, and has many industrial applications. Since pyrrolnitrin is easily decomposed by light, it is difficult to widely use it outdoors. As an alternative, fludioxonil, a synthetically produced non-systemic surface fungicide that is structurally similar and has excellent light stability, has been commercialized for seed and foliar treatment of plants. However, due to its high toxicity to aquatic organisms and adverse effects in human cell lines, many countries have established maximum residue levels and strictly control its levels. Pyrrolomycin and pyoluteorin, which have antibiotic/antibiofilm activity against Gram-positive bacteria and high anti-oomycete activity against the plant pathogen Pythium ultimum, respectively, were isolated and identified from microorganisms. This review summarizes the biosynthesis and production of natural pyrrolnitrin derived from bacteria and the characteristics of synthetic fludioxonil and other natural phenylpyrrole derivatives among the HPDs. We expect that a plethora of highly effective, novel HPDs that are safe for humans and environments will be developed through the generation of an HPD library by microbial biosynthesis and chemical synthesis.

Effect of Gamma Irradiation and Cichorium Products on Oxidative Damage and Lipid Metabolism in Streptozotocin-Induced Diabetic Rats (감마선 전신 조사와 치커리 가공물 식이가 Streptozotocin 유발 당뇨쥐의 산화적 손상과 지질대사에 미치는 영향)

  • Woo, Hyun-Jung;Kim, Ji-Hyang;Kim, Jin-Kyu;Kim, Hee-Jung;Park, Ki-Beom
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.2 s.62
    • /
    • pp.102-111
    • /
    • 2006
  • The increased occurrence of hyperglycemia and oxidative stress in streptozotocin (STZ) induced type I diabetes has been implicated in the etiology and pathology of disease complication. STZ has known to be genotoxic in a variety of assays including tests for microbial mutagenesis and unscheduled DNA synthesis in rat kidney. Diabetes mellitus (DM) is a pathologic condition, resulting in severe metabolic imbalances and non-physiologic changes in many tissues. We examined the effect of gamma radiation and KWNP on preventing the development of insulin dependent diabetes mellitus using streptozotocin-induced Fisher 344 diabetic rats. The hematological values (red blood cell and white blood cell), serum biochemical constituents-alkaline phosphatase (ALP), total cholesterol, triglycerides and insulin-were checked and the organs (testis, spleen and kidney) were weighed. The gonad indices of the STZ treated groups were much lower than the value of the control group. But the gonad indices of the KWNP treated groups were higher than those of the treated groups. The ratio of the weight of kidney to the body weight of the STZ treated groups was higher than that of the control group. The value of the diabetic group treated with KWNP after irradiation (F group) was lower than the other STZ treated groups. The white blood cell and ALP values of the F group were lower than the other STZ groups, as well. The cholesterol and triglyceride values of all the KWNP treated groups were significantly lower than the other groups. A significant increase (about 10 times) of insulin was detected in the F group. The results of hematological assay showed the distinctive damage in the irradiated and STZ treated groups. The quantity of apoptotic cells in seminiferous tubule of testis confirmed a serious damage as assessed in the STZ treated groups. These experimental results have revealed that treatment of the products of KWNP after irradiation has the antidiabetic effect in the STZ-induced diabetic rats. But the F group showed higher recuperative power. These experimental results have revealed that treatment of the gamma irradiation and KWNP have the recovering effect in the STZ-induced diabetic rats.

IL-1 AND TNF-α RELEASE IN HUMAN POLYMORPHONUCLEAR LEUKOCYTES AFTER EXPOSURE TO CALCIUM HYDROXIDE TREATED Porphyromonas endodontalis LIPOPOLYSACCHARIDE (수산화칼슘 처리된 Porphyromonas endodontalis Lipopolysaccharide가 다형핵백혈구의 IL-1과 TNF-α 생성에 미치는 영향에 관한 연구)

  • Park, Chan-Je;Park, Dong-Sung;Yoo, Hyeon-Mee;Oh, Tae-Seok;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.463-472
    • /
    • 2002
  • Bacterial lipopolysaccharide (LPS) plays a major role in stimulating the synthesis and release of the principal osteoclast-activating cytokines, namely, interleukin 1 and tumor necrosis factor-$\alpha$ from immune cells. Although rnonocytes/macrophages are the main producers of these cytokines, recent evidence has indicated that polymorphonuclear leukocytes (PMN) have the ability to release IL-1 and TNF-$\alpha$. Calcium hydroxide has been shown to be an effective medicament in root canal infections, reducing the microbial titre within the canal. It has been proposed that the therapeutic effect of Ca(OH)$_2$ may also be the result of direct inactivation of LPS. The purpose of this study was to investigate whether treatment of Porphyromonas endodontalis LPS with calcium hydroxide alters its biological action as measured by human PMN secretion of IL-1 and TNF-$\alpha$, and it was compared with Escherichia coli LPS. P. endodontalis ATCC 35406 was cultured in anaerobic condition, and LPS was extracted using the hot-phenol water extraction method and purified. Purchased E. coli LPS was also purified. 100 $\mu\textrm{g}$/ml of each LPS in pyrogen free water were incubated with 25mg/ml Ca(OH)$_2$ at 37$^{\circ}C$ for 7 days. The supernatants were subjected to ultrafiltration, and the isolates were lyophilized and weighed. PMNs were obtained from peripheral blood by centrifugation layered over Lymphoprep. The cells were resuspended (4$\times$10$^6$ cells/ml) in RPMI 1640 followed by treatment with various concentrations of LPS (0, 0.1, 1, 10$\mu\textrm{g}$/ml) for 24 hours at 37$^{\circ}C$ in 5% $CO_2$ incubator. The supernatants of cells were collected and the levels of IL-1$\alpha$, IL=1$\beta$ and TNF-$\alpha$ were measured by enzyme-linked immunosorbent assay. The results were as follows ; 1. The levels of IL-1$\alpha$, IL-1$\beta$, TNF-$\alpha$ from PMN treated with each LPS were significantly higher than those released from unstimulated PMN of the control group (p<0.05). 2. The levels of all three cytokines released from PMN stimulated with each calcium hydroxide treated LPS were significantly lower than those released from PMN stimulated with each untreated LPS (p<0.05), while they were not significantly different from those released from unstimulated PMN of the control group (p>0.05) 3. The levels of secretion for all three cytokines were affected in a dose-dependent manner in PMN stimulated with each LPS (p<0.05), but not in PMN stimulated with each calcium hydroxide treated LPS (p>0.05). 4. The levels of all three cytokines released from PMN stimulated with p. endodontalis LPS were significantly lower than those released from PMN stimulated with E coli LPS (p<0.05).

Development of New Natural Antioxidants for Cosmeceuticals (천연물 유래 항산화 기능성 화장품 신소재 개발)

  • Yoo, Ick-Dong;Kim, Jong-Pyung;Kim, Won-Gon;Yun, Bong-Sik;Ryoo, In-Ja
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.349-357
    • /
    • 2005
  • New antioxidative substances for cosmeceuticals were screened from natural resources such as microbial metabolites, mushrooms, and medicinal plants. Four antioxidants were isolated from the fungal metabolite of Eupenicillium shearii and their structures were determined to be new phenolic compounds. The compounds were designated as melanocins A, B, C, and D. Melanocins $A{\sim}D$ exhibited free radical scavenging activity on DPPH and superoxide with $EC_{50}$ values of $21{\sim}94\;and\;7{\sim}84{\mu}M$, respectively, which were stronger activity than those of ${\alpha}-tocopherol$ and BHA. Melanocin A showed anti-wrinkle effects on the UV-irrated hairless mouse skin. A novel hispidin antioxidative compound designated as inoscavin A was isolated from the fruiting body of the mushroom, Inonotus xeranticus. Inoscavin A scavenged superoxide radical with $EC_{50}$ values of $0.03{\mu}g/mL$, and inhibited rat liver microsomal lipid peroxidation with $EC_{50}$ values of $0.3{\mu}g/mL$. Benzastatins $A{\sim}G$, the novel antioxidants isolated from the culture of Streptomyces nitrosporeus showed potent lipid peroxidation inhibitory activity with $EC_{50}$ values of $3{\sim}30{\mu}M$. A cyclopentene compound with strong hypopigmentary effect was isolated from the fungal metabolite of Penicillium sp. and identifed as terrein. Terrein significantly reduced melanin levels in a melanomacyte cell line, Mel-Ab. It showed 10 times stronger activity than kojic acid, but exhibited no cytotoxic effect even in $100{\mu}M$. It was suggested that terrein reduced melanin synthesis by reducing tyrosinase production by MITF down-regulation.

The synthesis of dextran from rice hydrolysates using Gluconobacter oxydans KACC 19357 bioconversion (Gluconobacter oxydans 생물전환을 통한 쌀 가수분해물 유래 dextran 합성)

  • Seung-Min Baek;Hyun Ji Lee;Legesse Shiferaw Chewaka;Chan Soon Park;Bo-Ram Park
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • Dextran is a glucose homo-polysaccharide with a predominantly α-1,6 glycosidic linkage of microbial source and is known to be produced primarily by lactic acid bacteria. However, it can also be obtained through the dextran dextrinase of acetic acid bacteria (Gluconobacter oxydans). The dextrin-based dextran was obtained from rice starch using G. oxydans fermentation of rice hydrolysate, and its properties were studied. Both dextrin- and rice hydrolysate-added media maintained the OD value of 6 after 20 h of incubation with acetic acid bacteria, and the gel permeation chromatography (GPC) analysis of the supernatant after 72 h of incubation confirmed that a polymeric material with DP of 480 and 405, which was different from the composition of the substrate in the medium, was produced. The glucose linkage pattern of the polysaccharide was confirmed using the proton nuclear magnetic resonance (1H-NMR) and the increased α-1,4:α-1,6 bond ratio from 0.23 and 0.13 to 1:2.37 and 1:4.4, respectively, indicating that the main bonds were converted to α-1,6 bonds. The treatment of dextrin with a rat-derived alpha-glucosidase digestive enzyme resulted in a slow release of glucose, suggesting that rice hydrolysate can be converted to dextran using acetic acid bacteria with glycosyltransferase activity to produce high-value bio-materials with slowly digestible properties.