• Title/Summary/Keyword: Microbial Enzymatic Activity

Search Result 72, Processing Time 0.024 seconds

Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

  • Park, Boyeon;Hwang, Hyelyeon;Lee, Jina;Sohn, Sung-Oh;Lee, Se Hee;Jung, Min Young;Lim, Hyeong In;Park, Hae Woong;Lee, Jong-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.524-530
    • /
    • 2017
  • Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results: L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ${\sim}2.6{\mu}g/mL$ to $6.5{\mu}g/mL$ and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

evelopment of biological methods for improving the storage qualities of sweet persimmon harvested in Gyeongsangnam-do (생물학적 처리방법에 의한 경남산 단감의 저장성 향상을 위한 기술개발)

  • 조성환;김영록
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.263-270
    • /
    • 1995
  • In order to promote the prevention of microbial and enzymatic spoilage and to retain the freshiness, sweet persimmons harvested in Gyeongsangnam-do were treated with graperfruit seed extract(GFSE)-CaCO3 mixture and stored in the proper packaging conditions. A low concentration of GFSE showed effective growth inhibition of plant pathological bacteria and fungi, Enterobacter pyrinus and Fusarium sp., which were involved in the decay of fruits and vegetables. GFSE was stable to heat treatment; its antimicrobial activity was not changed by heat treatment upto 10$0^{\circ}C$. However, when the temperature was raised to 12$0^{\circ}C$, about 90% of total activity was retained within 30 min. GFSE was also highly stable to broad pH changes; its activity was not changed in the range of pH 2.0 to pH 12.0. The physiological function of cell membrane in the spores of Bacillus cereus and the hyphae of Fusarium sp. was destroyed by treating with GFSE. It was observed that treating sweet persimmons with GFSE minxture and storing them in strech-wrapped packages could prolong the greshness of sweet persimmons and reduce quality deterioration.

  • PDF

Effective Production of N-Acetyl-$\beta$-glucosamine by Serratia marcescens Using Chitinadceous Waste

  • Kim, Kwang;A. Louise Creagh;Charles A. Haynes
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.71-77
    • /
    • 1998
  • The strain of Serratia marcescens QM B1466 produces selectively large amount of chitinolytic enzymes (about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acetyl-${\beta}$-D-glucosamine (NAG) was performed with a system consisting of two hydrolases (chitinase and chitobiase) produced by optimization of a microbial host consuming chitin particles. For the development of Large-scale biological process for the production of NAG from chitinaceous waste, the selection and optimization of a microbial host, particle size of crab/shrimp chitin sources and initial induction time using chitin as a sole carbon source on chitinase/chitobiase production and NAG production were examined. Crab-shell chitin(1.5%) treated by dilute acid and , ball-milled with a normal diameter less than 250m gave the highest chitinase activity over a 7 days culture. Crude chitinase/ chitobiase solution obtained in a 10 L fed-batch fermentation showed a maximum activities of 23.6 U/mL and 5.1 U/mL, respectively with a feeding time of 3 hrs, near pH 8.5 at 30$^{\circ}C$.

  • PDF

Caking in Food Powders

  • Ruan, Roger;Choi, Young-Jin;Chung, Myong-Soo
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.329-336
    • /
    • 2007
  • Caking has been a serious problem in food, feed, pharmaceutical, and related industries, where dry powdered materials are produced and/or utilized. Caking of dry food powders occurs when water is redistributed or absorbed by the powders during processing and storage. The powders become sticky when their surfaces are mobilized by water, resulting in inter-particle binding, formation of clusters, and inter-particle fusion, which lead to caking. As a result of caking, the solubility of the powdered materials may decrease, lipid oxidation and enzymatic activity may increase, and sensory qualities such as flavor and crispness may deteriorate. Caking may also lead to microbial growth. For consumers, caking of powder products is a sign of poor quality and possible food safety problems. This paper provides a review of factors affecting caking, caking mechanisms, and analysis of caking based on previous studies.

Isolation and Charaterization of Microorganism Producing Cephalosporin C Acylase (Cephalosporin C Acylase 생산균주의 분리 및 특성)

  • Park, Yong-Chjun;Kim, Ook-Hyun;Lim, Jai-Yun;Kim, Young-Chang
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.559-564
    • /
    • 1995
  • Twenty microbial strains producing the acylase were isolated from soil by using Micrococcus luteus ATCC 9341 as an indicator strain, using either D-($\alpha $)-phenylglycine methylester and 7-aminocephalosporanic acid (7-ACA) or glutaric acid dimethylester and 7-ACA as substrates. Among the isolates, only one strain was turned out to be the 7-ACA producer from either cephalosporin C or glutaryl 7-ACA as the substrates by using the overlay of 7-ACA sensitive strain (SS5). 7-ACA produced from cephalosporin C by an isolate (APS20) was detected by high performance liquid chromatography. The isolated strain (APS20) was identified to Bacillus macerans on the basis of cellular fatty acid profile by gas chromatography. Bacillus macerans APS20 had no $\beta $-lacta-mase activity on cephalosporin C, and that is very important for the enzymatic production process of 7-ACA. However, this strain was resistant up to 100 $\mu $g/ml of cephalosporin C.

  • PDF

Endochitosanase Produced by Bacillus sp. P2l as a Potential Source for the Production of Chitooligosaccharides. (키토산 올리고당의 제조용 소재로서 Bacillus sp. P2l 기원의 키토산분해효소)

  • 박노동;조유영;이현철;조종수;조도현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.345-351
    • /
    • 1998
  • In an effort to develop a potent system for the production of various dp (degree of polymerization) chitooligosaccharides, 32 enzymes or microbial systems were screened for chitosanolytic acitivity using chitosan as a substrate. The efficiency of each enzyme system was evaluated by the changes of turbidity and viscosity of chitosan solution, the amount of precipitate and the reducing sugar-producing activity in the enzymatic reaction mixture. Based on these assay methods for the chitosanase activity, Bacillus sp. P2l out of 32 screened systems showed highly potent endochitosanase, which was comparable with a commercially available enzyme (E7). Chitooligosaccharides of dp 3-7 were separated by TLC as major enzymatic reaction products, suggesting that the chitosanase from Bacillus sp. P2l be endo-splitting type.

  • PDF

Study on the promotion of inflammation and whitening of natural materials using bioconversion technology

  • Lee, Se-Won;Lim, Jeong-Muk;Lee, Seong-Hyeon;Lee, Jeong-Ho;Oh, Byung-Teak
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.116-116
    • /
    • 2018
  • Bioconversion, the enzymatic process by microorganism on organic precursor to desired products. The natural extract is converted into a form that can be easily absorbed into the skin, while scaling up of to higher quantity is possible. Selection of naturally processed raw material rather than chemically processed is preferred. Therefore, fermentation was carried out by mixing Rubus coreanus Miquel, soybean, Zanthoxylum schinifolium as bioconverting materials, the possibility of inflammation, whitening material were checked. In this study, useful microorganisms were isolated from various salted fish, and 16S rDNA sequence was analyzed to confirm their genetic characteristics. Combining the three natural materials using bioconversion technology to study their activity before and after fermentation. To evaluate the antioxidant activity and the active ingredient content the DPPH radical scavenging activity and the total polyphenol content were examined. Raw 264.7 cells were used to evaluate MTT assay, NO and $TNF-{\alpha}$ production inhibitory activity. Also, to evaluate the whitening activity, tyrosinase inhibitory activity and melanin formation inhibitory activity were measured using B16F10 cells. In total 34 strains were obtained from various salted fish. The effective strains useful for the bioconversion process, showed that DPPH radical scavenging ability and polyphenol content were increased in the two kinds of microbial treatment groups compared to the untreated group. 16S rDNA sequencing analysis of the strains showed excellent in Pediococcus pentosaceus B1 in comparison. An increase of up-to 156% in anti-oxidative activity and 141% in polyphenol content was observed after bioconversion. In addition, after mixed fermentation the toxidty of Raw 264.7 and B16F10 cells tended to decrease and a significant increase was observed in anti-inflammatory activity as well. Also, tyrosinase activity and melanin significantly. synthesis decreased significantly.

  • PDF

The Role of Protozoa in Feed Digestion - Review -

  • Jouany, J.P.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.113-128
    • /
    • 1999
  • Protozoa can represent as half of the total rumen microbial biomass. Around 10 genera are generally present on the same time in the rumen. Based on nutritional aspects they can be divided in large entodiniomorphs, small entodiniomorphs and isotrichs. Their feeding behaviour and their enzymatic activities differ considerably. Many comparisons between defaunated and refaunated animals were carried out during the last two decades to explain the global role of protozoa at the ruminal or animal levels. It is now generally considered that a presence of an abundant protozoal population in the rumen has a negative effect on the amino acid (AA) supply to ruminants and contribute to generate more methane but, nevertheless, protozoa must not be considered as parasites. They are useful for numerous reasons. They stabilise rumen pH when animal are fed diets rich in available starch and decrease the redox potential of rumen digesta. Because cellulolytic bacteria are very sensitive to these two parameters, protozoa indirectly stimulate the bacterial cellulolytic activity and supply their own activity to the rumen microbial ecosystem. They could also supply some peptides in the rumen medium which can stimulate the growth of the rumen microbiota, but this aspect has never been considered in the past. Their high contribution to ammonia production has bad consequences on the urinary nitrogen excretion but means also that less dietary soluble nitrogen is necessary when protozoa are present. Changes in the molar percentages of VFA and gases from rumen fermentations are not so large that they could alter significantly the use of energy by animals. The answer of animals to elimination of protozoa (defaunation) depends on the balance between energy and protein needs of animals and the supply of nutrients supplied through the diet. Defaunation is useful in case of diets short in protein nitrogen but not limited in energy supply for animals having high needs of proteins.

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

Studies on Microbial Extracellular $\beta$-Gala-ctosidase

  • Lee, Keun-Eok
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.2-114
    • /
    • 1979
  • $\beta-Galactosidase$ is an enzyme which catalizes hydrolysis of lactose, a natural substrate, to glucose and galctose and transferring some monosac-charide units to active acceptors as sugar or alcohol. The occurence of $\beta-Galactosidase$ is known in various microorganisms, animals and higher plants and has been studied by many investigatigators. Especially, a great deal of articles for the enzyme of E. coli have been presented in genetic control mechanism and induction-repression effects of proteins, On the other hand, in the dairly products industry, it is important to hydrolyes lactosd which is the principal sugar of milk and milk products. During the last few years, the interest in enzymatic hydrolysis of milk lactose has teen increased, because of the lactose intolerence in large groups of the population. Microbial $\beta-Galactosidases$ are considered potentially most suitable for processing milk to hydrolyse lactose and, in recent years, the immobilized enzyme from yeast has been examined. Howev, most of the microbial $\beta-Gal$ actosidase are intracellular enzymes, except a few fungal $\beta-Gala-$ ctosidases, and extracellular $\beta-Galactosidase$ which may be favorable to industrial applieation is not so well investigated. On this studies, a mold producing a potent extracellular $\beta-Galactosidase$ was isolated from soil and identified as an imperfect fungus, Beauveria bassians. In this strain, both extracellular and intracellular $\beta-Galactosidases$ were produced simultaneously and a great increase of the extracellular production was acheved by improving the cultural conditions. The extracellular enzyme was purified more than 1, 000 times by procedures including Phosphocellulose and Sephadex G-200 chromatographies. Several characteristics of the enzymewas clarified with this preparation. The enzyme has a main subunit of molecular weight of 80, 000 which makes an active aggregate. And at neutral pH range, it has optimum pH for activity and stability. The Km value was determined to be 0.45$\times$10$^{-3}$ M for $o-Nitrophenyl-\beta-Galactoside.$ In any event, it is interesting to sttudy the $\beta-Galactosidase$ of B. bassiana for the mechanism of secretion and conformational structure of enzyme.

  • PDF