• Title/Summary/Keyword: Microbial Community

Search Result 751, Processing Time 0.023 seconds

Effect of Non-indigenous Bacterial Introductions on Rhizosphere Microbial Community

  • Nogrado, Kathyleen;Ha, Gwang-Su;Yang, Hee-Jong;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.194-202
    • /
    • 2021
  • BACKGROUND: Towards achievement of sustainable agriculture, using microbial inoculants may present promising alternatives without adverse environmental effects; however, there are challenging issues that should be addressed in terms of effectiveness and ecology. Viability and stability of the bacterial inoculants would be one of the major issues in effectiveness of microbial pesticide uses, and the changes within the indigenous microbial communities by the inoculants would be an important factor influencing soil ecology. Here we investigated the stability of the introduced bacterial strains in the soils planted with barley and its effect on the diversity shifts of the rhizosphere soil bacteria. METHODS AND RESULTS: Two different types of bacterial strains of Bacillus thuringiensis and Shewanella oneidensis MR-1 were inoculated to the soils planted with barley. To monitor the stability of the inoculated bacterial strains, genes specific to the strains (XRE and mtrA) were quantified by qPCR. In addition, bacterial community analyses were performed using v3-v4 regions of 16S rRNA gene sequences from the barley rhizosphere soils, which were analyzed using Illumina MiSeq system and Mothur. Alpha- and beta-diversity analyses indicated that the inoculated rhizosphere soils were grouped apart from the uninoculated soil, and plant growth also may have affected the soil bacterial diversity. CONCLUSION: Regardless of the survival of the introduced non-native microbes, non-indigenous bacteria may influence the soil microbial community and diversity.

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

Comparison of Microbial Community Structure in Kiwifruit Pollens

  • Kim, Min-Jung;Jeon, Chang-Wook;Cho, Gyongjun;Kim, Da-Ran;Kwack, Yong-Bum;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.143-149
    • /
    • 2018
  • Flowers of kiwifruit are morphologically hermaphroditic and survivable binucleate pollen is produced by the male flowers. In this study, we investigated microbial diversity in kiwifruit pollens by analyzing amplicon sequences of 16S rRNA. Four pollen samples were collected: 'NZ' was imported from New Zealand, 'CN' from China in year of 2014, respectively. 'KR13' and 'KR14' were collected in 2013' and 2014' in South Korea. Most of the identified bacterial phyla in the four different pollens were Proteobacteria, Actinobacteria and Firmicutes. However, the imported and the domestic pollen samples showed different aspects of microbial community structures. The domestic pollens had more diverse in diversity than the imported samples. Among top 20 OTUs, Pseudomonas spp. was the most dominant specie. Interestingly, a bacterial pathogen of kiwifruit canker, Pseudomonas syringae pv. actinidiae was detected in 'NZ' by the specific PCR. This study provides insights microbial distribution and community structure information in kiwifruit pollen.

Microbial Community Dysbiosis and Functional Gene Content Changes in Apple Flowers due to Fire Blight

  • Kong, Hyun Gi;Ham, Hyeonheui;Lee, Mi-Hyun;Park, Dong Suk;Lee, Yong Hwan
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.404-412
    • /
    • 2021
  • Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.

Analysis of Attached Algae and Microbial Community Structure in Sedimentation Basin of Water and Wastewater Treatment Plant (정수 및 하수처리공정 중 침전지 부착조류 및 미생물 군집구조 해석)

  • Lim, Byung-Ran;Ahn, Kyu-Hong;Song, Kyung-Gun;Park, Yu-Jung;Jun, Dae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.61-67
    • /
    • 2005
  • The objective of this study was to investigate community structure of attached algae and microbes in sedimentation basin of water and wastewater treatment plants by using respiratory quinone profile. There was an evident difference, in microbial community structure and attached algae species, between inclination plate settler and drainage canal in the sedimentation basin. The algae was composed of species in following order; Chlorophyceae>Bascillariophyceae>Cyanophyceae. The dominant quinone types of attached microorganisms in the wastewater treatment plant were plastoquinone (PQ)-9, vitamin(V)K-1 followed by UQ-8, but those for water treatment plant were VK-1, PQ-9 followed by UQ-8. These results suggests that nutrients, seasons and material of sedimentation basin have notable influence on composition of attached algae and microbial community structure in water and wastewater treatment plants.

Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community

  • Yokoyama, Hiroshi;Ishida, Mitsuyoshi;Yamashita, Takahiro
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.757-762
    • /
    • 2016
  • The group of Fe(III) oxide-reducing bacteria includes exoelectrogenic bacteria, and they possess similar properties of transferring electrons to extracellular insoluble-electron acceptors. The exoelectrogenic bacteria can use the anode in microbial fuel cells (MFCs) as the terminal electron acceptor in anaerobic acetate oxidation. In the present study, the anodic community was compared with the community using Fe(III) oxide (ferrihydrite) as the electron acceptor coupled with acetate oxidation. To precisely analyze the structures, the community was established by enrichment cultures using the same inoculum used for the MFCs. High-throughput sequencing of the 16S rRNA gene revealed considerable differences between the structure of the anodic communities and that of the Fe(III) oxide-reducing community. Geobacter species were predominantly detected (>46%) in the anodic communities. In contrast, Pseudomonas (70%) and Desulfosporosinus (16%) were predominant in the Fe(III) oxide-reducing community. These results demonstrated that Geobacter species are the most specialized among Fe(III)-reducing bacteria for electron transfer to the anode in MFCs. In addition, the present study indicates the presence of a novel lineage of bacteria in the genus Pseudomonas that highly prefers ferrihydrite as the terminal electron acceptor in acetate oxidation.

Evaluation of Microbial Community Composition in Cultivated and Uncultivated Upland Soils by Fatty Acids (지방산에 의한 경지 및 미경지 토양의 미생물군집평가)

  • Suh, Jang-Sun;Chon, Gil-Hyong;Kwon, Jang-Sik;Kim, Sang-Hyo;Baek, Hyung-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • We examined the relationships among community composition, microbial population, and microbial biomass to determine whether different land use leads to differences in microbial community composition. And also the relationships between soil characteristics and microbial community composition were investigated. There was no difference in pH between uncultivated and cultivated soils, but electrical conductivity, and contents of organic matter, available P and exchangeable cations were greater in the cultivated soil compared to the uncultivated soil. A linear correlation ($r^2=0.557$, n=18, p<0.01) was found between biomass-C estimated with fumigation extraction technique and total amount of fatty acids. An increase of fatty acid methyl esters (FAMEs) for bacteria, actinomycetes, fungi and protozoa was observed in cultivated soil.

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

Veterinary antibiotic oxytetracycline's effect on the soil microbial community

  • Danilova, Natalia;Galitskaya, Polina;Selivanovskaya, Svetlana
    • Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.72-80
    • /
    • 2020
  • Background: Antibiotics are widely used to treat animals from infections. After fertilizing, antibacterials can remain in the soil while adversely affecting the soil microorganisms. The concentration of oxytetracycline (OTC) in the soil and its effect on the soil microbial community was assessed. To assess the impact of OTC on the soil microbial community, it was added to the soil at concentrations of 50, 150, and 300 mg kg-1 and incubated for 35 days. Results: The concentration of OTC added to the soil decreased from 150 to 7.6 mg kg-1 during 30 days of incubation, as revealed by LC-MS. The deviations from the control values in the level of substrate-induced respiration on the 5th day of the experiment were, on average, 26, 68, and 90%, with OTC concentrations at 50, 150, and 300 mg kg-1, respectively. In samples with 150 and 300 mg kg-1 of OTC, the number of bacteria from the 3rd to 14th day was 2-3 orders of magnitude lower than in the control. The addition of OTC did not affect the fungal counts in samples except on the 7th and 14th days for the 150 and 300 mg kg-1 contaminated samples. Genes tet(M) and tet(X) were found in samples containing 50, 150, and 300 mg kg-1 OTC, with no significant differences in the number of copies of tet(M) and tet(X) genes from the OTC concentration. Conclusions: Our results showed that even after a decrease in antibiotic availability, its influence on the soil microbial community remains.

A Novel Method to Assess the Aerobic Gasoline Degradation by Indigenous Soil Microbial Community using Microbial Diversity Information (토양 미생물 다양성 지표를 이용한 토착 미생물 군집의 호기성 가솔린 오염분해능력 평가 기법 개발 연구)

  • Hwang, Seoyun;Lee, Nari;Kwon, Hyeji;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.839-846
    • /
    • 2016
  • Since oil leakage is one of the most common nonpoint pollution sources that contaminate soil in Korea, the capacity of soil microbial community for degrading petroleum hydrocarbons should be considered to assess the functional value of soil resource. However, conventional methods (e.g., microcosm experiments) to assess the remediation capacity of soil microbial community are costly and time-consuming to cover large area. The present study suggests a new approach to assess the toluene remediation capacity of soil microbial community using a microbial diversity index, which is a simpler detection method than measuring degradation rate. The results showed that Shannon index of microbial community were correlated with specific degradation rate ($V_{max}$), a degradation factor. Subsequently, a correlation equation was generated and applied to Michaelis-Menten kinetics. These results will be useful to conveniently assess the remediation capacity of soil microbial community and can be widely applied to diverse engineering fields including environment-friendly construction engineering fields.