• Title/Summary/Keyword: Microarray Data Classification

Search Result 67, Processing Time 0.029 seconds

Cross platform classification of microarrays by rank comparison

  • Lee, Sunho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.475-486
    • /
    • 2015
  • Mining the microarray data accumulated in the public data repositories can save experimental cost and time and provide valuable biomedical information. Big data analysis pooling multiple data sets increases statistical power, improves the reliability of the results, and reduces the specific bias of the individual study. However, integrating several data sets from different studies is needed to deal with many problems. In this study, I limited the focus to the cross platform classification that the platform of a testing sample is different from the platform of a training set, and suggested a simple classification method based on rank. This method is compared with the diagonal linear discriminant analysis, k nearest neighbor method and support vector machine using the cross platform real example data sets of two cancers.

Performance Comparison of Classication Methods with the Combinations of the Imputation and Gene Selection Methods

  • Kim, Dong-Uk;Nam, Jin-Hyun;Hong, Kyung-Ha
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1103-1113
    • /
    • 2011
  • Gene expression data is obtained through many stages of an experiment and errors produced during the process may cause missing values. Due to the distinctness of the data so called 'small n large p', genes have to be selected for statistical analysis, like classification analysis. For this reason, imputation and gene selection are important in a microarray data analysis. In the literature, imputation, gene selection and classification analysis have been studied respectively. However, imputation, gene selection and classification analysis are sequential processing. For this aspect, we compare the performance of classification methods after imputation and gene selection methods are applied to microarray data. Numerical simulations are carried out to evaluate the classification methods that use various combinations of the imputation and gene selection methods.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

A Bayesian Validation Method for Classification of Microarray Expression Data (마이크로어레이 발현 데이터 분류를 위한 베이지안 검증 기법)

  • Park, Su-Young;Jung, Jong-Pil;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2039-2044
    • /
    • 2006
  • Since the bio-information now even exceeds the capability of human brain, the techniques of data mining and artificial intelligent are needed to deal with the information in this field. There are many researches about using DNA microarray technique which can obtain information from thousands of genes at once, for developing new methods of analyzing and predicting of diseases. Discovering the mechanisms of unknown genes by using these new method is expecting to develop the new drugs and new curing methods. In this Paper, We tested accuracy on classification of microarray in Bayesian method to compare normalization method's Performance after dividing data in two class that is a feature abstraction method through a normalization process which reduce or remove noise generating in microarray experiment by various factors. And We represented that it improve classification performance in 95.89% after Lowess normalization.

Generating Rank-Comparison Decision Rules with Variable Number of Genes for Cancer Classification (순위 비교를 기반으로 하는 다양한 유전자 개수로 이루어진 암 분류 결정 규칙의 생성)

  • Yoon, Young-Mi;Bien, Sang-Jay;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.767-776
    • /
    • 2008
  • Microarray technology is extensively being used in experimental molecular biology field. Microarray experiments generate quantitative expression measurements for thousands of genes simultaneously, which is useful for the phenotype classification of many diseases. One of the two major problems in microarray data classification is that the number of genes exceeds the number of tissue samples. The other problem is that current methods generate classifiers that are accurate but difficult to interpret. Our paper addresses these two problems. We performed a direct integration of individual microarrays with same biological objectives by transforming an expression value into a rank value within a sample and generated rank-comparison decision rules with variable number of genes for cancer classification. Our classifier is an ensemble method which has k top scoring decision rules. Each rule contains a number of genes, a relationship among involved genes, and a class label. Current classifiers which are also ensemble methods consist of k top scoring decision rules. However these classifiers fix the number of genes in each rule as a pair or a triple. In this paper we generalized the number of genes involved in each rule. The number of genes in each rule is in the range of 2 to N respectively. Generalizing the number of genes increases the robustness and the reliability of the classifier for the class prediction of an independent sample. Also our classifier is readily interpretable, accurate with small number of genes, and shed a possibility of the use in a clinical setting.

Robust inference with order constraint in microarray study

  • Kang, Joonsung
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2018
  • Gene classification can involve complex order-restricted inference. Examining gene expression pattern across groups with order-restriction makes standard statistical inference ineffective and thus, requires different methods. For this problem, Roy's union-intersection principle has some merit. The M-estimator adjusting for outlier arrays in a microarray study produces a robust test statistic with distribution-insensitive clustering of genes. The M-estimator in conjunction with a union-intersection principle provides a nonstandard robust procedure. By exact permutation distribution theory, a conditionally distribution-free test based on the proposed test statistic generates corresponding p-values in a small sample size setup. We apply a false discovery rate (FDR) as a multiple testing procedure to p-values in simulated data and real microarray data. FDR procedure for proposed test statistics controls the FDR at all levels of ${\alpha}$ and ${\pi}_0$ (the proportion of true null); however, the FDR procedure for test statistics based upon normal theory (ANOVA) fails to control FDR.

A Comparison Study of Multiclass SVM Methods in Microarray Data

  • Hwang, Jin-Soo;Lee, Ji-Young;Kim, Jee-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.311-324
    • /
    • 2006
  • The Support Vector Machine(SVM) is very functional and efficient classification method to any other classification analysis method. However, its optimal extension to more than two classes is not obvious. In this paper several multi-category SVM methods are introduced and compared using simulation and real data sets. Also comparison with traditional multi-category classification and SVM based methods is performed.

  • PDF

Ensemble Classifier with Negatively Correlated Features for Cancer Classification (암 분류를 위한 음의 상관관계 특징을 이용한 앙상블 분류기)

  • 원홍희;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.12
    • /
    • pp.1124-1134
    • /
    • 2003
  • The development of microarray technology has supplied a large volume of data to many fields. In particular, it has been applied to prediction and diagnosis of cancer, so that it expectedly helps us to exactly predict and diagnose cancer. It is essential to efficiently analyze DNA microarray data because the amount of DNA microarray data is usually very large. Since accurate classification of cancer is very important issue for treatment of cancer, it is desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. Generally combining classifiers gives high performance and high confidence. In spite of many advantages of ensemble classifiers, ensemble with mutually error-correlated classifiers has a limit in the performance. In this paper, we propose the ensemble of neural network classifiers learned from negatively correlated features using three benchmark datasets to precisely classify cancer, and systematically evaluate the performances of the proposed method. Experimental results show that the ensemble classifier with negatively correlated features produces the best recognition rate on the three benchmark datasets.

The Design and Implement of Microarry Data Classification Model for Tumor Classification (종양 분류를 위한 마이크로어레이 데이터 분류 모델 설계와 구현)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1924-1929
    • /
    • 2007
  • Nowadays, a lot of related data obtained from these research could be given a new present meaning to accomplish the original purpose of the whole research as a human project. The method of tumor classification based on microarray could contribute to being accurate tumor classification by finding differently expressing gene pattern statistically according to a tumor type. Therefore, the process to select a closely related informative gene with a particular tumor classification to classify tumor using present microarray technology with effect is essential. In this thesis, we used cDNA microarrays of 3840 genes obtained from neuronal differentiation experiment of cortical stem cells on white mouse with cancer, constructed accurate tumor classification model by extracting informative gene list through normalization separately and then did performance estimation by analyzing and comparing each of the experiment results. Result classifying Multi-Perceptron classifier for selected genes using Pearson correlation coefficient represented the accuracy of 95.6%.

Cancer-Subtype Classification Based on Gene Expression Data (유전자 발현 데이터를 이용한 암의 유형 분류 기법)

  • Cho Ji-Hoon;Lee Dongkwon;Lee Min-Young;Lee In-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1172-1180
    • /
    • 2004
  • Recently, the gene expression data, product of high-throughput technology, appeared in earnest and the studies related with it (so-called bioinformatics) occupied an important position in the field of biological and medical research. The microarray is a revolutionary technology which enables us to monitor several thousands of genes simultaneously and thus to gain an insight into the phenomena in the human body (e.g. the mechanism of cancer progression) at the molecular level. To obtain useful information from such gene expression measurements, it is essential to analyze the data with appropriate techniques. However the high-dimensionality of the data can bring about some problems such as curse of dimensionality and singularity problem of matrix computation, and hence makes it difficult to apply conventional data analysis methods. Therefore, the development of method which can effectively treat the data becomes a challenging issue in the field of computational biology. This research focuses on the gene selection and classification for cancer subtype discrimination based on gene expression (microarray) data.