• 제목/요약/키워드: Microalgal

검색결과 205건 처리시간 0.021초

Characterization of MABIK Microalgae with Biotechnological Potentials

  • Jo, Seung-Woo;Kang, Nam Seon;Lee, Jung A;Kim, Eun Song;Kim, Kyeong Mi;Yoon, Moongeun;Hong, Ji Won;Yoon, Ho-Sung
    • 한국해양바이오학회지
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2020
  • This article emphasized the physiological characteristics of the selected marine microalgal strains obtained from the culture collection of the National Marine Biodiversity Institute of Korea (MABIK). Therefore, in this study, 13 different marine microalgal strains belonging to the phylum Chlorophyta were analyzed for the composition of fatty acids, elements, photosynthetic pigments, and monosaccharides, as well as the lipid and protein contents. The results presented that the primary fatty acids were palmitic (C16:0), palmitoleic (C16:1 n-7), stearic (C18:0), oleic (C18:1 n-9), linoleic (C18:2 n-6), and α-linolenic (ALA, C18:3 n-3) acid in the evaluated microalgae. The lipid contents of heterotrophically grown strains ranged from 15.1% to 20.4%. The calorific values of the strains were between 17.4 MJ kg-1 and 21.3 MJ kg-1. The major monosaccharides were galactose, glucose, and mannose, while the primary photosynthetic pigments were chlorophyll-a (Chla), chlorophyll-b (Chlb), and lutein, respectively. Based on the results, the microalgal strains showed high potentials in the use of microalgae-based technologies to produce biochemicals, food, and renewable fuels as they are rich in sustainable sources of high-value bio-compounds, such as antioxidants, carbohydrates, and fatty acids.

저서성 요각류 Tigriopus japonicus의 nauplii 생산에 미치는 미세조류의 영향 (Effect of Microalgal Species on Nauplii Production in the Benthic Copepod Tigriopus japonicus)

  • 김미정;김정창;허성범
    • 한국수산과학회지
    • /
    • 제42권3호
    • /
    • pp.268-275
    • /
    • 2009
  • The survival and growth of marine benthic invertebrate larvae such as abalone depend on the nutritional value of micro algae. However, it is difficult to determine the dietary value of the many microalgal species used for food by benthic larvae. Therefore, we tested the benthic copepod, Tigriopus japonicus, which grazes microalgae on substrata in a manner similar to abalone larvae. It also has short generation time and is easy to rear which makes to be easier to examine the dietary value of each micro algal species. We measured the daily production of nauplii from gravid females of T. japonicus fed 26 microalgal species separately. Amino acid and fatty acid content of the micro algae and the copepod was also analyzed. The nauplii production of T. japonicus was the highest (10.7) when they were fed Navicula sp. (B-394) and the lowest (0.8) when they were fed Scrippsiella trochoidea. In Tetraselmis suecica the nauplii production was so high (8.2), which was not significantly different with the diatom group. We determined that Navicula sp. (B-394), Rhaphoneis sp. and T. suecica were good sources of food for T. japonicus. We suggest that a diet of with a mixture of these three micro algal species may be also good for invertebrate larvae such as abalone.

Selection of Suitable Species of Chlorella, Nannochloris, and Nannochloropsis in High- and Low-Temperature Seasons for Mass Culture of the Rotifer Brachionus plicatilis

  • Bae, Jean-Hee;Hur, Sung-Bum
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.323-332
    • /
    • 2011
  • To find seasonally optimal microalgae for mass culture of the rotifer Brachionus plicatilis, the growth rates of 12 microalgal species (two marine Chlorella spp., five marine Nannochloris spp., two marine Nannochloropsis spp., one estuarine Nannochloropsis sp., and two estuarine Chlorella spp.) were compared at $25^{\circ}C$ at 15 psu and 30 psu. Among these, six species showing high growth rates were chosen and examined again at high ($30^{\circ}C$ and $32^{\circ}C$) and low ($10^{\circ}C$) temperatures. Their amino and fatty acids and the dietary value of the rotifers that fed on each microalgal species were examined. Nannochloris sp. (KMMCC-119) and Chlorella vulgaris (KMMCC-120) showed the highest growth rates at temperatures over $30^{\circ}C$ and at $10^{\circ}C$, respectively. The growth rate of Nannochloris was higher than those of Chlorella and Nannochloropsis at high temperatures, but lower than those of the latter at low temperatures. The growth rate of rotifers fed on Nannochloropsis was highest and that of those fed on Chlorella was lowest. Levels of eicosapentaenoic acid and docosahexaenoic acid were highest in Nannochloropsis and lowest in Nannochloris. However, total amino acid content was highest in Nannochloris and lowest in Chlorella. In conclusion, Nannochloropsis sp. (KMMCC-33) was the best microalgal species for the mass culture of the rotifer. However, during high- or low-temperature seasons in which Nannochloropsis does not grow well, Nannochloris spp. (KMMCC-119, 395) and C. vulgaris (KMMCC-120) would adequately replace Nannochloropsis sp. (KMMCC-33).

A Cost Analysis of Microalgal Biomass and Biodiesel Production in Open Raceways Treating Municipal Wastewater and under Optimum Light Wavelength

  • Kang, Zion;Kim, Byung-Hyuk;Ramanan, Rishiram;Choi, Jong-Eun;Yang, Ji-Won;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.109-118
    • /
    • 2015
  • Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링 (Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density)

  • 윤영상;박종문
    • KSBB Journal
    • /
    • 제14권4호
    • /
    • pp.414-421
    • /
    • 1999
  • 본 연구에서는 미세조류의 배양액을 통한 빛의 전달특성을 수식적으로 표현하고 이를 바탕으로 광합성 활성을 예측할 수 있는 수학적 모델을 구축하였다. 먼저 미세조류의 배양액에서의 빛의 거동은 Beer-Lambert 식으로서 개략적으로 표현할 수 있었다. 미세조류의 광합성을 산소생산속도로서 나타낸 결과 미세조류의 농도가 높은 경우 낮은 농도에 비하면 단위 부피당 활성은 크게 나타난 반면 단위 건조중량당 활성은 오히려 낮게 나타났다. 이렇게 운전조건에 의존적인 광반응곡선을 예측하기 위하여 국부적인 광합성 활성을 가정하고 이를 전체부피에 대하여 평균하는 방버으로 수학적인 모델을 구축하였다. 또한 실험결과를 이용하여 고유 매개변수를 추정하였으며 예측치와 실험치를 비교한 결과 우수한 일치성을 확인하였다. 모델을 이용하여 광합성 활성에 크게 영향을 미치는 빛의 세기, 세포농도 및 빛의 투과특성과 같은 주요 운전조건에 대하여 그 영향을 살펴보았다. 그 결과 빛의 세기가 강할수록 광합성 활성은 증가하지만 광합성효율은 감소하는 경향을 확인할 수 있었다. 미세조류의 세포농도의 경우 단위 부피당 산소생산속도를 위한 최적의 농도가 존재함을 알 수 있었으며 이는 조사되는 빛의 세기에 따라 변화하였다. 빛의 투과거리가 짧을수록 광합성 효율은 증가하지만 충분히 강한 빛이 공급될 경우에는 일정한 투과거리까지는 최고치를 유지하였다. 결론적으로 광생물반응기의 성능을 예측하고 최적조건을 결정하는데 제시된 모델이 유용하게 사용될 수 있을 것으로 판단된다

  • PDF

미세조류 배양을 이용한 부영양호 내 수질 개선 기술 개발 (Development of Improving Water Quality in Eutrophic Lake Using Microalgal Cultivation)

  • 김기현;강성모;조용희;전상현;김준호;박한울;이윤우;정정호;임상민;이철균
    • 한국해양바이오학회지
    • /
    • 제10권2호
    • /
    • pp.91-96
    • /
    • 2018
  • There are many eutrophic lakes by point and non-point pollution sources such as in dustrial waste water, domestic raw sewage, and mucks. The eutrophic lakes not only cause algal blooms but also destroy the ecosystem in the lakes due to high nutrient concentrations. The purpose of this study was to improve water quality in eutrophic lakes by cultivating microalgae using photobioreactors (PBRs) with selectively permeable mesh (SPM), supplying nutrients in the lake and inhibiting cell leakage by diffusion and water permeability. Chlorella vulgaris, was cultivated using PBRs with SPM installed in Inkyung Lake located in Inha university, Incheon, Korea. When cultivating C. vulgaris, $8.3g/m^2/day$ of average biomass productivity was obtained at 3 days. Furthermore, concentrations of total nitrogen and phosphorus were reduced by 35.7% and 84.2%, respectively, compared to initial condition and water quality in eutrophic lake was improved to oligotrophic environment. These results suggest that microalgal cultivation using PBRs with SPM in the lake could produce microalgal biomass as well as improve water quality by decreasing nutrient concentrations.

Microalgal-MBR과 Bacterial-MBR 운전에 있어 EPS 조성이 Fouling 발생특성에 미치는 영향 (Effects of EPS Composition on Fouling Characteristics at the Microalgal-MBR and Bacterial-MBR Process)

  • 김태연;이수현;권수민;황선진
    • 한국물환경학회지
    • /
    • 제39권2호
    • /
    • pp.175-180
    • /
    • 2023
  • The aim of this study was to compare the fouling characteristics of Extracellular polymeric substances (EPS) secreted by Chlorella vulgaris with the case of Bacterial-MBR (BMBR), Microalgal-MBR (MMBR) for advanced wastewater treatment using the Laboratory scale, in order to suggest a method to minimize fouling in MMBR by identifying the effects of amounts and compositions of EPS secreted by C. vulgaris and bacteria in the activated sludge on fouling. Contrary to expectations, fouling occurred relatively severely in the MMBR from the beginning of the operation than in the BMBR. Reasons for such a fouling pattern were considered to be the effect of C-EPS, which accumulates on the membrane surface of MMBR 30 times more than that on the membrane surface of activated sludge (BMBR). In this respect, according to the results of this experiment and a comparative review of several previous studies, it was confirmed that unlike activated sludge, in which the ratio of P-EPS was relatively higher than that of C-EPS, in case of C. vulgaris, the ratio of C-EPS to P-EPS was relatively higher than that in case of activated sludge. This was presumed to be the main cause of the significant fouling phenomenon in MMBR. However, an increase in TMP with increasing C-EPS concentration was not observed.

최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상 (Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions)

  • 김지훈;홍선우;김진우;손병락;김미경;김용환;설진현;전수환
    • 한국해양바이오학회지
    • /
    • 제16권1호
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

미세조류 바이오연료 상용화를 위한 주요 인자 연구 (A Review on Major Factors for Microalgae Biofuel Commercialization)

  • 강도형;허수진;오철홍;주세종;전선미;최현우;노재훈;박세헌;김태영
    • Ocean and Polar Research
    • /
    • 제34권4호
    • /
    • pp.365-384
    • /
    • 2012
  • Microalgae are photosynthetic microorganisms that are highly productive in the presence of basic renewable natural sources (light, $CO_2$, water and nutrients). They can synthesize lipids, carbohydrates and proteins in a small number of days. Subsequently, these carbon-captured products can be processed into both biofuels and valuable co-products. Additionally, microalgae would be an ideal feedstock for replacing land-based food crops with cellular products as high energy density transportation fuels. These microscopic organisms could contribute a significant amount of renewable energy on a global scale. In Korea, microalgae biofuel research was common in the early 1990s. The research activities were unfortunately stopped due to limited governmental funds and low petroleum prices. Interest in algal biofuels in Korea has been growing recently due to an increased concern over oil prices, energy security, greenhouse gas emissions, and the potential for other biofuel feedstock to compete for limited agricultural resources. The high productivity of microalgae suggests that much of the Korean transportation fuel requirements can be met by biofuels at a production cost competitive with the increasing cost of petroleum seen in early 2008. At this time, the development of microlalgal biomass production technology remains in its infancy. This study reviewed microalgae culture systems and biomass production, harvesting, oil extraction, conversion, and technoeconomical bottlenecks. Many technical and economic barriers to using microalgal biofuels need to be overcome before mass production of microalgal-derived fuel substitutes is possible. However, serious efforts to overcome these barriers could become a large-scale commercial reality. Overall, this study provides a brief overview of the past few decades of global microalgal research.

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana;Florez, July;Angulo, Edgardo;Varela-Prieto, Lourdes;Infante, Cherlys;Barrios, Fredy;Barraza, Beatriz;Gallardo, D.I;Valdes, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1138-1149
    • /
    • 2017
  • The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.