• 제목/요약/키워드: Micro-structured Surface

검색결과 47건 처리시간 0.023초

Neuronal Differentiation of PC12 Cells Cultured on Growth Factor-Loaded Nanoparticles Coated on PLGA Microspheres

  • Park, Keun-Hong;Kim, Hye-Min;Na, Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권11호
    • /
    • pp.1490-1495
    • /
    • 2009
  • The development of nanotechnology has penetrated the fields of biology and medicine, resulting in remarkable applications for tissue regeneration. In order to apply this technology to tissue engineering, we have developed nano-scaled 3D scaffolds consisting of growth factor-loaded heparin/poly(l-lysine) nanoparticles (NPs) attached to the surface of polymeric micro spheres via polyionic complex methods. Growth factor-loaded NPs were simply produced as polyelectrolyte complexes with diameters of 100-200 nm. They were then coated onto positively charged poly(lactic-co-glycolic acid) (PLGA) pretreated with polyethyleneimine to enable cell adhesion, proliferation, and stimulation of neurite outgrowth. Propidium iodide staining and $\beta$-tubulin analysis revealed that neuronal PC12 cells proliferated extensively, expressed significant amounts of b-tubulin, and showed well-structured neurite outgrowth on polymeric microspheres by stimulation with growth factors. These results suggest that cellular adhesion and biological functionality on prepared PLGA microspheres enabled terminal differentiation of neuronal cells.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

가스분무 Mg-Zn-Y 합금분말의 압출거동 (Extrusion Behavior of Gas Atomized Mg Alloy Powders)

  • 채홍준;김영도;이진규;김정곤;김택수
    • 한국분말재료학회지
    • /
    • 제14권4호
    • /
    • pp.251-255
    • /
    • 2007
  • This work is to report not only the effect of rapid solidification of $MgZn_{4.3}Y_{0.7}$ alloys on the micro-structure, but also the extrusion behavior on the materials properties. The average grain size of the atomized powders was about $3-4{\mu}m$. The alloy powders of $Mg_{97}Zn_{4.3}Y_{0.7}$, consisted of I-Phase (Icosahedral, $Mg_{3}Zn_{6}Y_{1}$) as well as Cubic structured W-Phase ($Mg_{3}Zn_{3}Y_{2}$), which was finely distributed within ${\alpha}-Mg$ matrix. The oxide layer formed along the Mg surface was about 48 nm in thickness. In order to study the consolidation behavior of Mg alloy powders, extrusion was carried out with the area reduction ratio of 10:1 to 20:1. As the ratio increased, fully deformed and homogeneous microstructure could be obtained, and the mechanical properties such as tensile strength and elongation were simultaneously increased.

저항 용접을 이용한 금속 샌드위치 판재 접합에 관한 연구 : Part 1 - 공정변수의 선정 (A Study on the Resistance Welding of Metallic Sandwich Panel : Part 1 - Determination of Process Parameters)

  • 이상민;김진범;나석주
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.49-54
    • /
    • 2005
  • Inner Structured and Bonded(ISB) panel, a kind of metallic sandwich panel, consists of two thin skin plates bonded to a micro-patterned inner structure. Its overall thickness is $1\~3mm$and it has attractive properties such as ultra-lightweight, high efficiency in stiffness-to-weight and strength-to-weight ratio. In many previous studies, resistance welding, brazing and adhesive bonding are studied for joining the panel. However these methods did not consider productivity, but focused on structural characteristics of joined panels, so that the joining process is very complicated and expensive. In this paper, a new joining process with resistance welding is developed. Curved surface electrodes are used to consider the productivity and the stopper is used between electrodes during welding time to maintain the shape of inner structure. Welding time, gap of electrodes and distance between welding points are selected as the process parameters. By measuring the tensile load with respect to the variation of welding time and gap of electrodes, proper welding conditions are studied. Welding time is proper between 1.5-2.5cycle. If welding time is too long, then inner structures are damaged by overheating. Gap of electrode should be shorter than threshold value fur joint strength, when total thickness of inner structure and skin plate is 3.3mm, the threshold distance is 3.0mm.

초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구 (Lamellar Structured TaN Thin Films by UHV UBM Sputtering)

  • 이기락;;;;이정중
    • 한국표면공학회지
    • /
    • 제38권2호
    • /
    • pp.65-68
    • /
    • 2005
  • The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.

임베디드 커패시터로의 응용을 위해 상온에서 RF 스퍼터링법에 의한 증착된 bismuth magnesium niobate 다층 박막의 특성평가 (The characteristics of bismuth magnesium niobate multi layers deposited by sputtering at room temperature for appling to embedded capacitor)

  • 안준구;조현진;유택희;박경우;웬지긍;허성기;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.62-62
    • /
    • 2008
  • As micro-system move toward higher speed and miniaturization, requirements for embedding the passive components into printed circuit boards (PCBs) grow consistently. They should be fabricated in smaller size with maintaining and even improving the overall performance. Miniaturization potential steps from the replacement of surface-mount components and the subsequent reduction of the required wiring-board real estate. Among the embedded passive components, capacitors are most widely studied because they are the major components in terms of size and number. Embedding of passive components such as capacitors into polymer-based PCB is becoming an important strategy for electronics miniaturization, device reliability, and manufacturing cost reduction Now days, the dielectric films deposited directly on the polymer substrate are also studied widely. The processing temperature below $200^{\circ}C$ is required for polymer substrates. For a low temperature deposition, bismuth-based pyrochlore materials are known as promising candidate for capacitor $B_2Mg_{2/3}Nb_{4/3}O_7$ ($B_2MN$) multi layers were deposited on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system at room temperature. The physical and structural properties of them are investigated by SEM, AFM, TEM, XPS. The dielectric properties of MIM structured capacitors were evaluated by impedance analyzer (Agilent HP4194A). The leakage current characteristics of MIM structured capacitor were measured by semiconductor parameter analysis (Agilent HP4145B). 200 nm-thick $B_2MN$ muti layer were deposited at room temperature had capacitance density about $1{\mu}F/cm^2$ at 100kHz, dissipation factor of < 1% and dielectric constant of > 100 at 100kHz.

  • PDF

고연소도 사용후 핵연료의 가열산화와 고온가열을 통한 미세조직 변화고찰 (Study of morphology on the Oxidation and the Annealing of High Burn-hp $UO_2$ Spent Fuel)

  • 김대호;방제건;양용식;송근우;이형권;권형문
    • 방사성폐기물학회지
    • /
    • 제3권4호
    • /
    • pp.301-307
    • /
    • 2005
  • 조사후 핵연료 가열(PIA장비)를 이용한 고연소도 UO2 사용후 핵연료의 산화 및 가열후 미세조직의 변화를 관찰하였다. 울진 2호기에서 한국원자력연구소 조사후시험시설로 이송된 국산 경수로용 고연소도 사용후 핵연료는 봉평균 연소도가 57,000 MWd/tU-rod avg.이였다. 본 시험에 사용된 시편은 국부연소도 65,000 MWd/tU UO2 소결체의 고형체 200 mg을 사용하였다. 본 시편을 사용후 핵 연료 가열(PIA) 시험장비를 이용하여 핫셀 내에서 3시간의 산화시험과 연속적으로 $1,400^{\circ}C$ 까지 가열하였다. 결정립경계까지의 산화를 위하여 $500^{\circ}C$에서 헬륨 50 ml, 표준공기 100 ml를 흔합한 산화분위기로 3시간을 유지하였다. 핵분열기체 방출거동을 알기위해 시험 전과정중에 85Kr의 방출량을 베타 측정기와 감마 측정기를 이용하여 실시간으로 측정 하였다. 가열시험이 종료된 후 전자주사현미경을 이용하여 미세구조의 변화를 관찰하였다. 시험결과 가열하는 동안 핵분열생성물은 UO2기지의 결정립경계와 표면으로 이동된 것을 관찰하였다. 이 시편은 환원과정을 통하여 재구조화 되었고, $5\~10\;{\mu}m$ 정도의 결정립크기를 가진 것으로 나타났다.

  • PDF