• Title/Summary/Keyword: Micro-structured Surface

Search Result 47, Processing Time 0.027 seconds

Development of a Wireless, Battery-free SAW-based Temperature and Humidity Sensor incorporating a Bidirectional Reflective Delay Line (양방향 반사 지연선을 이용한 무선, 무전원 SAW 기반 온, 습도 센서 개발)

  • Lim, Chun-Bae;Lee, Kee-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1515_1516
    • /
    • 2009
  • A 440MHz wireless and passive surface acoustic wave (SAW) based micro-sensor was developed for simultaneous measurement of temperature and humidity. The developed sensor is composed of a SAW reflective delay lines structured by an IDT (Inter-Digital Transducer), four reflectors and humidity sensitive film (polyimide). Polyimide was dry-ecthed by RIE (Reactive Ion Etching) to obtain high roughness, which gives the large reaction area resulting in high sensitivity. In wireless testing using a network analyzer, sharp reflection peaks with high S/N ratio, small signal attenuation, and few spurious peaks were observed in the time domain. High sensitivity towards the temperature and humidiy were also observed in the large concentration range. The obtained sensitivity was $16.8^{\circ}/^{\circ}C$ for temperature sensor and $15.8^{\circ}$/%RH for humidity sensor.

  • PDF

Fabrication of Polymeric Optical Waveguide by LIGA (LIGA공정을 이용한 정밀 고분자 광도파로 제작)

  • Kim, Jin-Tae;Kim, Byeong-Cheol;Choi, Choon-Gi;Yoon, Keun-Byoung;Jeong, Myung-Yung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.997-1006
    • /
    • 2003
  • LICA technique evolved as a basic fabrication process fur micro-structure. The present report deals with the basic technological features in the sequence of the LIGA technique such as deep x-ray lithography(DXRL), electroplating, and moulding processes at Pohang Light Source (PLS). We designed 3-D structured master for fabrication of polymeric optical wavegude and manufactured polymeric optical wavegude with the same using hot embossing process. Polymeric optical waveguide could be produced with ${\pm}$ 1 $\mu\textrm{m}$ accuracy and good surface roughness.

Influence of nano-structured alumina coating treatment on shear bond strength between zirconia ceramic and resin cement (나노구조 알루미나 코팅 처리가 지르코니아 도재와 레진 시멘트 사이 전단 결합강도에 미치는 영향)

  • Kim, Dong-Woon;Lee, Jung-Jin;Kim, Kyoung-A;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.354-363
    • /
    • 2016
  • Purpose: The aim of this study was to investigate whether the application of nano-structured alumina coating to the surface of Y-TZP could enhance the bond strength with resin cement. Materials and methods: A total of 80 zirconia plates were prepared and divided into four groups. : 1) airborne particle abrasion treatment (A) : 2) Rocatec treatment after airborne particle abrasion (R) : 3) nano-structured alumina coating treatment after polishing (PC) and 4) nano-structured alumina coating after airborne particle abrasion (AC). Alumina coating was formed by the hydrolysis of aluminium nitride (AlN) powder and heat treatment at $900^{\circ}C$. Coating patterns were observed with FE-SEM. Resin block was bonded to treated zirconia ceramics using resin cement. The shear bond strengths were measured before and after thermocycling. Results: The FE-SEM images show a dense and uniform nano-structured alumina coating structure, which enhances shear bond strength by increasing micro mechanical interlocking to resin cement. PC and AC groups showed higher shear bond strengths than A and R groups before and after thermocycling. A and R groups displayed significant drops in shear bond strength after thermocycling. However, PC and AC groups did not show any meaningful decreases in shear bond strength after thermocycling. Conclusion: Treatment of Y-TZP ceramics with nano-structured alumina coating could significantly increase their shear bond strength.

A study on Manufacture of EMI Composite Powder by the Electroless Ni Plating Method (무전해 니켈도금방법을 이용한 EMI 복합분말제조에 관한 연구)

  • Joung, I.;Yoon, S.R.;Han, S.N.;Na, J.H.;Kim, C.W.
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.444-449
    • /
    • 1998
  • There are various shielding materials that have been considered; the use of a metallic plate or the layering of a conductive material on a plastic surface and the insertion of filler in plastics. All of these methods have shown their merits and weakness. Therefore, many studies have concentrated on developing materials that effectively cut down EMI without increase in weights of housing materials. In these respects, this study has focused on investigations of the shielding effect of materials that have electroless nickel plating on the lamella structured micro particles surface with low specific gravity. When a film of electroless nickel were plated on a micro particle surfaces and then mixed with paint, the electromagnetic shielding effects were measured as 63dB. Although these effects were less than that 90dB of the copper plate, trials in a series of 6 times increased the shielding effect by IOdB and is applicable to wide range of EMI shielding.

  • PDF

Rate Expression of Fischer-Tropsch Synthesis Over Co-Mn Nanocatalyst by Response Surface Methodology (RSM)

  • Mansouri, Mohsen;Atashi, Hossein;Khalilipour, Mir Mohammad;Setareshenas, Naimeh;Shahraki, Farhad
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.769-777
    • /
    • 2013
  • The effect of operating conditions (temperature and the partial pressures of H2 and CO) on the reaction rate of Fischer-Tropsch synthesis (FTS) were investigated by carrying out experiments according to a Box-Behnken design (BBD), and were mathematically modeled by using response surface methodology (RSM). The catalyst used was a nano-structured cobalt/manganese oxide catalyst, which was prepared by thermal decomposition. The rate of synthesis was measured in a fixed-bed micro reactor with $H_2/CO$ molar feed ratio of 0.32-3.11 and reactor pressure in the range of 3-9.33 bar at space velocity of $3600h^{-1}$ and a temperature range of 463.15-503.15 K, under differential conditions (CO conversion below 2%). The results indicated that in the present experimental setup, the temperature and the partial pressure of CO were the most significant variables affecting reaction rate. Based on statistical analysis the quadratic model of reaction rate of FTS was highly significant as p-value 0.0002.

Pool Boiling Characteristics on the Microstructured surfaces with Both Rectangular Cavities and Channels (사각 공동 및 채널이 형성된 마이크로 구조 표면에서의 수조비등 특성연구)

  • Kim, Dong Eok;Park, Su Cheong;Yu, Dong In;Kim, Moo Hwan;Ahn, Ho Seon;Myung, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

Effects of Carbon Nitride Surface Layers and Thermal Treatment on Field-Emission and Long-Term Stability of Carbon Nanotube Micro-Tips (질화탄소 표면층 및 열처리가 탄소 나노튜브 미세팁의 전계방출 및 장시간 안정성에 미치는 영향)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • The effects of thermal treatment on CNTs, which were coated with a-$CN_x$ thin film, were investigated and related to variations of chemical bonding and morphologies of CNTs and also properties of field emission induced by thermal treatment. CNTs were directly grown on nano-sized conical-type tungsten tips via the inductively coupled plasma-chemical vapor deposition (ICP-CVD) system, and a-$CN_x$ films were coated on the CNTs using an RF magnetron sputtering system. Thermal treatment on a-$CN_x$ coated CNT-emitters was performed using a rapid thermal annealing (RTA) system by varying temperature ($300-700^{\circ}C$). Morphologies and microstructures of a-$CN_x$/CNTs hetero-structured emitters were analyzed by FESEM and HRTEM. Chemical composition and atomic bonding structures were analyzed by EDX, Raman spectroscopy, and XPS. The field emission properties of the a-$CN_x$/CNTs hetero-structured emitters were measured using a high vacuum (below $10^{-7}$ Torr) field-emission measurement system. For characterization of emission stability, the fluctuation and degradation of the emission current were monitored in terms of operation time. The results were compared with a-$CN_x$ coated CNT-emitters that were not thermally heated as well as with the conventional non-coated CNT-emitters.

Hydrophobic Organic/Inorganic Composite Films with 3D Hierarchical Nanostructured Surfaces (3D 계층적 나노구조화된 표면을 갖는 소수성 유/무기 복합 필름)

  • Seo, Huijin;Ahn, Jinseong;Park, Junyong
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.264-268
    • /
    • 2021
  • In this study, we propose a method for fabricating hydrophobic coatings/films with three-dimensional (3D) hierarchical nanostructured organic/inorganic composite surfaces. An epoxy-based, large-area 3D ordered nanoporous template is first prepared through an advanced photolithography technique called Proximity-field nanoPatterning (PnP). Then, a hierarchically structured surface is generated by densely impregnating the template with silica nanoparticles with an average diameter of 22 nm through dip coating. Due to the coexisting micro- and nano-scale roughness on the surface, the fabricated composite film exhibits a higher contact angle (>137 degrees) for water droplets compared to the reference samples. Therefore, it is expected that the materials and processes developed through this study can be used in various ways in the traditional coating/film field.

An Ultra-precision Lathe for Large-area Micro-structured Roll Molds (대면적 미세패턴 롤 금형 가공용 초정밀 롤 선반 개발)

  • Oh, Jeong Seok;Song, Chang Kyu;Hwang, Jooho;Shim, Jong Youp;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1303-1312
    • /
    • 2013
  • We report an ultra-precision lathe designed to machine micron-scale features on a large-area roll mold. The lathe can machine rolls up to 600 mm in diameter and 2,500 mm in length. All axes use hydrostatic oil bearings to exploit the high-precision, stiffness, and damping characteristics. The headstock spindle and rotary tooling table are driven by frameless direct drive motors, while coreless linear motors are used for the two linear axes. Finite element method modeling reveals that the effects of structural deformation on the machining accuracy are less than $1{\mu}m$. The results of thermal testing show that the maximum temperature rise at the spindle outer surface is approximately $0.5^{\circ}C$. Finally, performance evaluations of the error motion, micro-positioning capability, and fine-pitch machining demonstrate that the lathe is capable of producing optical-quality surfaces with micron-scale patterns with feature sizes as small as $20{\mu}m$ on a large-area roll mold.

A Novel Method of Reducing the Cogging Torque in SPM Machine with Segmented Stator

  • Jing, Li-Bing;Liu, Lin;Qu, Rong-Hai;Gao, Qi-Xing;Luo, Zheng-Hao
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.718-725
    • /
    • 2017
  • The method of stator segmentation is generally taken to enhance the electromagnetic performance of surface-mounted permanent magnet (SPM) machine and reduce its production cost. Based on the model with single slot, the expressions of cogging torque in machine with uniform or non-uniform segmentations are deduced and the optimal combination is given. Moreover, this paper discusses a structured skewing method and put forward a novel stator structure model to reduce the cogging torque in segmented permanent magnet machine. The model can reduce the cogging torque amplitude by shifting a proper angle of slot-opening. The shifting angle formula for analysis can also be suitable for other permanent machine with segmented stator. Finally the results of finite element simulation are given to prove that the method is effective and feasible.