• Title/Summary/Keyword: Micro-spring

Search Result 150, Processing Time 0.025 seconds

Impact of piezocision on orthodontic tooth movement

  • Papadopoulos, Nikolaos;Beindorff, Nicola;Hoffmann, Stefan;Jost-Brinkmann, Paul-Georg;Prager, Thomas Michael
    • The korean journal of orthodontics
    • /
    • v.51 no.6
    • /
    • pp.366-374
    • /
    • 2021
  • Objective: This study investigated the impact of a single piezocision in the maxillary alveolar process on the speed of tooth movement. The null hypothesis was that the speed of tooth movement will be equal with and without piezocision. Methods: All maxillary molars on one side were moved against the combined incisors in 10 ten-week-old male Wistar rats. Under general anesthesia, a force of 25 cN was applied on either side using a Sentalloy closed coil spring. After placing the orthodontic appliance, vertical corticision was performed using a piezotome under local anesthesia, 2 mm mesial from the mesial root of the first molar on a randomly selected side; the other side served as the control. At the beginning of the treatment, and 2 and 4 weeks later, skull micro-computed tomography was performed. After image reconstruction, the distance between the mesial root of the first molar and the incisive canal, and the length of the mesial root of the first maxillary molar were measured. Moreover, the root resorption score was determined as described by Lu et al. Results: Significantly higher speed of tooth movement was observed on the corticision side; thus, the null hypothesis was rejected. The loss of root length and root resorption score were significantly more pronounced after piezocision than before. A strong correlation was observed between the speed of tooth movement and root resorption on the surgical side, but the control side only showed a weak correlation. Conclusions: Piezocision accelerates orthodontic tooth movement and causes increased root resorption.

A Study on Design of the Linear Generator in the Double Acting Stirling Engine (양방향 스털링엔진의 선형발전기 설계에 관한 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.638-644
    • /
    • 2015
  • This paper describes the continuing effort to analysis and design on dynamic and electrical behavior of gamma-type free piston Stirling engine/generator with dual-opposed linear generator for domestic micro-CHP (Combined Heat and Power) system. The double acting Stirling engine/generator has one displacer and two power piston which are supported by flexure springs. Two power pistons oscillate with symmetric sinusoidal displacement and are connected with moving magnet type linear generators for power generation. To operate Stirling engine/generator, combustion heat of natural gas is supplied to hot-end and heat is rejected from cold-end by cooling water. The temperature difference across the displacer induces the oscillating motion, and it can be explained with mass-spring vibration system. The purpose of this paper is to describe the design process of linear generator for the double acting free-piston Stirling engine.

Effects of Heated Effluents on the Intertidal Macroalgal Community Near Gori Nuclear Power Plant (고리원전의 온배수 방출이 주변 해조군집에 미치는 영향)

  • Kim, Young-Hwan;Ahn, Jung-Kwan;Yoon, Hee-Dong;Jang, Min-A
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.297-304
    • /
    • 2007
  • This study is intended to clarify the effects of heated effluents on intertidal benthic marine algal community in Korea. The species composition and biomass of marine algae at the discharge canal of Gori nuclear power plant on the southeastern coast of Korea were investigated seasonally from February 2001 to October 2006. As a result, 54 species (7 blue-green, 12 green, 9 brown and 26 red algae) of marine algae were found at the discharge canal during the past six years. In general, the number of species observed was abundant during winter to spring and less in autumn. Enteromorpha compressa, E. intestinalis, E. prolifera and Caulacanthus ustulatus were common species found more than 80% frequency during the study period. Seasonal fluctuations of mean biomass were 1-440 g dry wt m–2 and dominant species in biomass were Enteromorpha spp. (contribution to a total biomass proportion 28%), Sargassum horneri (14%) and Amphiroa beauvoisii (14%). It is evident from the floristic composition and biomass data that unique micro-environment of the discharge canal support different communities from those on the intake or control area. Results from the large numbers of surveys before and during plant operation showed that, in the regions influenced by thermal effluents such as the discharge canal of power plants, the process of ecological succession has been proceeded. It is assumed that the uni-directional water flow and the time of overhaul largely affect the development and succession of benthic marine algal communities of the discharge canal.

Seasonal and Locational Concentrations of Particulate Air Pollutants in Indoor Air of Public Facilities in Taegu Area (대구지역 공중위생법 규제대상시설의 실내공기중 입자상 오염물질의 계절별 및 지점별 농도분포 특성)

  • 백성옥;송희봉
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.163-176
    • /
    • 1998
  • In this study, airborne particle samples were obtained to determine the concentrations of particulate air pollutants in indoor and outdoor air of public facilities in Taegu area. Total of 12 public facilities, regulated by the Public Sanitary Law, were selected as sampling sites, which include three underground arcades, one railway and two bus terminals, three general hospitals, and three department stores. In each place, sampling was carried out seasonally during the period of October 1994 to July 1995, and four samples per each site per season were collected both indoors and outdoors simultaneously. After determination of suspended particulate matter (SPM) mass concentrations, the particle samples were divided into two parts for subsequent chemical analysis: one for the analysis of trace elements and the other for water soluble ions. Seasonal levels of SPM appeared to be the highest in spring and the lowest in summer both indoors and outdoors, while locational variations of highest in statioyterminals, and lowest in department stores . SPM concentrations indoors and outdoors did not show any significant differences each other in most places . However, there were significant correlations between indoor and outdoor levels of SPM and other chemical species . These results indicates that indoor SPM levels are likely to be significantly affected by outdoor sources in many places. The most significant source of SPM was estimated to be the resuspension of soil/road dust both indoors and outdoors . The concentrations of toxic heavy metals (Pb, Cd, Cr, Cu) in underground arcades appeared to be very much lower than the established air quality guidelines for underground environments. In addition, it is likely that micro-environmental parameters such as temperature, humidity, and air velocity, play a less significant role than outdoor air quality as a factor affecting the levels of particulate pollutants in indoor environments of public facilities in Taegu area.

  • PDF

Study on Deformation of Miniature Metal Bellows in Cryocooler Following Temperature Change of Internal Gas (내부 기체의 온도 변화에 따른 극저온 냉각기용 소형 금속 벨로우즈의 변형에 관한 연구)

  • Lee, Seung Ha;Lee, Tae Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.429-435
    • /
    • 2015
  • A bellows is an important temperature control component in a Joule-Thomson micro-cryocooler. It is designed using a very thin shell, and the inside of the bellows is filled with nitrogen gas. The bellows is made of a nickel-cobalt alloy that maintains its strength and elastic properties in a wide range of temperatures from cryogenic to $300^{\circ}C$. The pressure of the gas and the volume within the bellows vary according to the temperature of the gas. As a result, the bellows contracts or expands in the axial direction like a spring. To explore this phenomenon, the deformation of the bellows and its internal volume must be calculated iteratively under a modified pressure until the state equation of the gas is satisfied at a given temperature. In this paper, the modified Benedict-Webb-Rubin state equation is adopted to describe the temperature-volume-pressure relations of the gas. Experiments were performed to validate the proposed method. The results of a numerical analysis and the experiments showed good agreement.

Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구)

  • Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.

Design of Electromagnetically Driven Micro Scanning Mirror for Laser Animation System (레이저 디스플레이를 위한 전자력 구동 스캐닝 미러의 설계)

  • Lee, Kyoung-Gun;Jang, Yun-Ho;Yoo, Byung-Wook;Jin, Joo-Young;Lim, Yong-Geun;Kim, Yong-Kweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.578-585
    • /
    • 2009
  • In this paper, we present the design of an electromagnetic scanning mirror with torsional springs. The scanning mirror consisting of torsional springs and electromagnetic coils was designed for the applications of laser animation systems. We analyzed and optimized three types of torsional springs, namely, straight beam springs (SBS), classic serpentine springs (CSS), and rotated serpentine springs (RSS). The torsional springs were analyzed in terms of electrical resistance, fabrication error tolerance, and resonance mode separation of each type using analytical formula or numerical analysis. The RSS has advantages over the others as follows: 1) A low resistance of conductors, 2) wide resonance mode separation, 3) strong fabrication error tolerance, 4) a small footprint. The double-layer coils were chosen instead of single-layer coils with respect to electromagnetic forces. It resulted in lower power consumption. The geometry of the scanning mirror was optimized by calculations; RSS turn was 12 and the width of double-layer coil was $100{\mu}m$, respectively. When the static rotational angle is 5 degrees, the power consumption of the mirror plate was calculated to be 9.35 mW since the resistance of the coil part and a current is $122{\Omega}$ and 8.75 mA, respectively. The power consumption of full device including the mirror plate and torsional springs was calculated to be 9.63 mW.

A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film (압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기)

  • Song, Hyun-Cheol;Kim, Sang-Jong;Moon, Hi-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

Fodder Supply in Cold Season in Gobi Nomadic Area, Mongolia

  • Yamasaki, S.;Ishida, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.203-206
    • /
    • 2004
  • Fodder supply condition was studied at 41 nomadic families in Gobi, Southern Semi-Desert area in Mongolia, from Dec. 1994 to Apr. 1995 to determine problems in cold, feed deficient season for establishment of sustainable livestock production system. The conditions of two family groups: those located in sparse vegetation (FG1), and those in comparably dense (FG2), were also compared. Commercial concentrate feed (concentrate), hay and Zoodoi were prepared for supplementation. Zoodoi was hand-made feed made mainly of Allium mongolicum and Allium polyrrhizum. Allium mongolicum tended to be used at FG1 frequently, and Allium polyrrhizum at FG2 depend on differences of micro vegetation. 44%, 90% and 39% of families prepared 165.6 kg of concentrate, 301.6 kg of hay and 6.8 kg of Zoodoi per sheep and goat (small livestock) on the average, respectively. The ratio of families that used concentrate at FG1 was smaller than those at FG2, though there were no significant differences on the amount. More hay was fed at FG1 than at FG2, and Zoodoi tended to be fed more in the FG1 group. Recipients were mostly restricted to young, female and sick small livestock that use the feeds effectively. More families gave concentrate and hay to the young than to the females and sick. They also gave more Zoodoi to young and sick animals than to females in this area. In the FG1 group, no differences were found between recipients on the concentrate supply. More families supplied hay to young animals than to sick ones, and Zoodoi was fed more to sick animals than to young and females. On the other hand, those in the FG2 found, more families fed fodders to young than to female and sick regardless of the kinds of feeds. The amount of fodder supplementation in the studied area was restricted, but accurate techniques of nomads to adapt the situation were clarified.

Study on the Change of Physical and Anatomical Properties in the Pine Wood by Accelerated Weathering Test (촉진열화실험에 의한 소나무의 물성 및 조직 변화에 대한 연구)

  • Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.324-331
    • /
    • 2012
  • The domestic pine was used to investigate the change of specific gravity, moisture contents, color and anatomical structure by accelerated weathering test (AWT). According to visual inspection, a few knot separation and looseness as well as considerable surface discoloration was found out. However, the crack and split of surface texture have been never occurred till the last step of AWT. On the whole, as the time of accelerated weathering test has increased, the specific gravity has decreased. Finally, after the 9th week of AWT, the specific gravity was 0.38 that reached to 82% compared to the control specimen. In case of moisture content (MC), it showed rising trend in its early stages, however, after 3th week of AWT it have displayed steady state. A deterioration of cell-wall components was not remarkably observed by scanning electron microscope (SEM), however the ray fractures of AWT specimen were observed more than those of control specimen. The full fracture of epithelial cell around resin canal was observed by optical microscope. The fracture of ray of 2th cycle AWT specimen was first, followed by 1th week and control group. A distortion of tracheid for early spring wood and fracture of epithelial cell were generally observed by a similar level, regardless of duration time of AWT. Therefore, it is obvious that increasing duration time of AWT does not affect the deterioration of micro-structure for wood members from this study. Although a considerable change of anatomical properties was not found, there is a need of further research to understand how will the changes of specific gravity and MC on the physical properties of wood member.

  • PDF