• Title/Summary/Keyword: Micro-pore

Search Result 337, Processing Time 0.029 seconds

Effects of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity $Al_2$O$_3$ Using Micro-Lithographic Technique-III: Stability of Crack-Like Pore (Ion Implantation으로 Ca를 첨가된 단결정 $Al_2$O$_3$의 Crack-Like Pore의 Healing 거동-III: Stability of Crack-Like Pore)

  • 김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.887-892
    • /
    • 1999
  • The inner crack-like pore with controlled amount of Ca impurity in the high purity alumina single crystal sapphire had been created by micro-fabrication technique which includes ion implanation photo-lithography Ar ion milling and hot press technique. The crack-like pores in two-hour hot pressed specimen were extremely stable even after heat treating at 1,80$0^{\circ}C$ for 5 hours almost no healing was observed. But the crack-like pores in one-hour hot pressed specimen at 1,30$0^{\circ}C$ were healed by heat treatment and the amount of healing was increased with the heat treatment time and temperature and the amount of Ca addition. The edges of crack-like pore parallel to <1100> direction in (001) basal plane were stable but the edges normal to this direction in (00101) plane <1120> direction were unstable to facetting This means that the surface energy of alumina along the <1100> direction in (0001) basal plane in much lower than <1120> direction.

  • PDF

Development of the Nanofluidic Filter and Nanopore Micromixer Using Self-Assembly of Nano-Spheres and Surface Tension (나노구체의 자기조립 성질과 표면장력을 이용한 나노유체필터 및 나노포어 마이크로믹서)

  • Seo, Young-Ho;Choi, Doo-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.910-914
    • /
    • 2007
  • We present a simple and an inexpensive method for the fabrication of a nano-fluidic filter and a nano-pore micromixer using self-assembly of nano-spheres and surface tension. Colloid-plug was formed by surface tension of liquid in a microchannel to fabricate nanofluidic filter. When colloid is evaporated, nano-spheres in a colloid are orderly stacked by a capillary force. Orderly stacked nano-spheres form 3-D nano-mesh which can be used as a mesh structure of a fluidic filter. We used silica nano-sphere whose diameter is $567{\pm}85nm$, and silicon micro-channel of $50{\mu}m$-diameter. Fabricated nano-fluidic filter in a micro-channel has median pore diameter of 158nm which was in agreement with expected diameter of the nano-pore of $128{\pm}19nm$. A nano-pore micromixer consists of $200\;{\mu}m-wide,\;100\;{\mu}m-deep$ micro-channel and self-assembled nano-spheres. In the nano-pore micromixer, two different fluids had no sooner met together than two fluids begin to mix at wide region. From the experimental study, we completely apply self-assembly of nano-spheres to nano-fluidic devices.

Surface Characteristics of Hydroxyapatite Coated Surface on Nano/Micro Pore Structured Ti-35Ta-xNb Alloys

  • Jo, Chae-Ik;Choe, Han-Choel
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.185-185
    • /
    • 2014
  • In this study, we investigated surface characteristics of hydroxyapatite coated surface on nano/micro pore structured Ti-35Ta-xNb alloys. This paper was focus on morphology and corrosion resistance of Anodic oxidation. To prepare the samples, Ti-35Ta-xNb (x= 0, 10 wt. %) alloys were manufactured by arc melting and heat-treated for 12 h at $1050^{\circ}C$ in Ar atmosphere at $0^{\circ}C$ water quenching. Micro-pore structured surface was performed using anodization with a DC power supply at 280 V for 3 min, nanotube formed on Ti-35Ta-xNb alloys was performed using DC power supply at 30 V in 60 min at room temperature. Surface morphology and structure were examined by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

  • PDF

Study on Hindered Diffusion of Single Polyelectrolyte Chain in Micro-Pores by Employing Brownian Dynamics Simulations (브라운 동력학 시뮬레이션에 의한 미세기공에서 단일한 다가전해질 사슬의 제한확산 연구)

  • 전명석;곽현욱
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.207-215
    • /
    • 2002
  • The hindered diffusion in confined spaces is an important phenomenon to understand in a micro-scale the filtration mechanism determined by the particle motion in membrane pores. Compared to the case of spherical colloids, both the theoretical investigations and the experiments on the hindered diffusion of polyelectrolytes is actually more difficult, due to lots of relevant parameters resulting from the complicated conformational properties of the polyelectrolyte chain. We have successfully performed the Brownian dynamics simulations upon a single polyeiectrolyte confined in a slit-like pore, where a coarse-grained bead-spring model incorporated with Debye-Huckel interaction is properly adopted. For the given sizes of both the polyelectrolyte and the pore width, the hindered diffusion coefficient decreases as the solution ionic concentration decreases. It is evident that a charge effect of the pore wall enhances the hindered diffusion of polyelectrolyte. Simulation results allow us to make sense of the diffusive transport through the micro-pore, which is restricted by the influences of the steric hindrance of polyelectrolytes as well as the electrostatic repulsion between the polyelectrolytes and pore wall.

Porosity and pore size distribution in high-viscosity and conventional glass ionomer cements: a micro-computed tomography study

  • Aline Borburema Neves ;Laisa Inara Gracindo Lopes;Tamiris Gomes Bergstrom;Aline Saddock Sa da Silva ;Ricardo Tadeu Lopes ;Aline de Almeida Neves
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.57.1-57.9
    • /
    • 2021
  • Objectives: This study aimed to compare and evaluate the porosity and pore size distribution of high-viscosity glass ionomer cements (HVGICs) and conventional glass ionomer cements (GICs) using micro-computed tomography (micro-CT). Materials and Methods: Forty cylindrical specimens (n = 10) were produced in standardized molds using HVGICs and conventional GICs (Ketac Molar Easymix, Vitro Molar, MaxxionR, and Riva Self-Cure). The specimens were prepared according to ISO 9917-1 standards, scanned in a high-energy micro-CT device, and reconstructed using specific parameters. After reconstruction, segmentation procedures, and image analysis, total porosity and pore size distribution were obtained for specimens in each group. After checking the normality of the data distribution, the Kruskal-Wallis test followed by the Student-Newman-Keuls test was used to detect differences in porosity among the experimental groups with a 5% significance level. Results: Ketac Molar Easymix showed statistically significantly lower total porosity (0.15%) than MaxxionR (0.62%), Riva (0.42%), and Vitro Molar (0.57%). The pore size in all experimental cements was within the small-size range (< 0.01 mm3), but Vitro Molar showed statistically significantly more pores/defects with a larger size (> 0.01 mm3). Conclusions: Major differences in porosity and pore size were identified among the evaluated GICs. Among these, the Ketac Molar Easymix HVGIC showed the lowest porosity and void size.

Image Calibration Techniques for Removing Cupping and Ring Artifacts in X-ray Micro-CT Images (X-ray micro-CT 이미지 내 패임 및 동심원상 화상결함 제거를 위한 이미지 보정 기법)

  • Jung, Yeon-Jong;Yun, Tae-Sup;Kim, Kwang-Yeom;Choo, Jin-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.93-101
    • /
    • 2011
  • High quality X-ray computed microtomography (micro-CT) imaging of internal microstructures and pore space in geomaterials is often hampered by some inherent noises embedded in the images. In this paper, we introduce image calibration techniques for removing the most common noises in X-ray micro-CT, cupping (brightness difference between the periphery and central regions) and ring artifacts (consecutive concentric circles emanating from the origin). The artifacts removal sequentially applies coordinate transformation, normalization, and low-pass filtering in 2D Fourier spectrum to raw CT-images. The applicability and performance of the techniques are showcased by describing extraction of 3D pore structures from micro-CT images of porous basalt using artifacts reductions, binarization, and volume stacking. Comparisions between calibrated and raw images indicate that the artifacts removal allows us to avoid the overestimation of porosity of imaged materials, and proper calibration of the artifacts plays a crucial role in using X-ray CT for geomaterials.

Quantification of 3D Pore Structure in Glass Bead Using Micro X-ray CT (Micro X-ray CT를 이용한 글라스 비드의 3차원 간극 구조 정량화)

  • Jung, Yeon-Jong;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.83-92
    • /
    • 2011
  • The random and heterogeneous pore structure is a significant factor that dominates physical and mechanical behaviors of soils such as fluid flow and geomechanical responses driven by loading. The characterization method using non-destructive testing such as micro X-ray CT technique which has a high resolution with micrometer unit allows to observe internal structure of soils. However, the application has been limited to qualitatively observe 2D and 3D CT images and to obtain the void ratio at macro-scale although the CT images contain enormous information of materials of interests. In this study, we constructed the 3D particle and pore structures based on sequentially taken 2D images of glass beads and quantitatively defined complex pore structure with void cell and void channel. This approach was enabled by implementing image processing techniques that include coordinate transformation, binarization, Delaunay Triangulation, and Euclidean Distance Transform. It was confirmed that the suggested algorithm allows to quantitatively evaluate the distribution of void cells and their connectivity of heterogeneous pore structures for glass beads.

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

Pore Structure of Cement Matrix Exposed to High Temperatures (고온하의 시멘트 경화체의 공극구조)

  • 송훈;도정윤;소승영;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.509-512
    • /
    • 2003
  • Dehydration and micro crack thermal expansion occur in cement hydrates of concrete structure heated by fire for a long time. The characteristic of concrete exposed to high temperature can be analyzed from distribution of porosity and pore size. Porosity showed a tendency to increase irrespective of specimen types. This is due to both the outbreak of collapse of gel comprising the cement and a micro crack by heating. Porosity did not affect the variety of specimen and increased with the same tendency throughout every specimen. In addition, the deteriorate of compressive strength resulted from increase in porosity

  • PDF

Effect of Pore-Characteristics of Concrete on the Diffusion Coefficient of Chloride Using the Accelerating Test Methods (콘크리트 중의 공극 특성에 따른 전위차 염소이온 확산계수)

  • 문한영;김홍삼;최두선;오세민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.711-714
    • /
    • 2003
  • Factors causing deterioration of concrete structures under marine environment are various, especially penetration and diffusion of chloride ion, carbon dioxide, and water through pore effects on the durability of concrete as well as mechanical properties of concrete. Pore of porous materials like concrete can be classified as micro-, meso-, and macro-pore. And pore of cement matrix is classified as pore which occupied by water, air void, and ITZ between cement paste and aggregates. In this study, to verify the relationship between pore of cement matrix and the property of chloride ion diffusivity, the regression analysis is producted. From the result of regression analysis, the average pore diameter more than total pore volume effects on the diffusivity of chloride ion.

  • PDF