• Title/Summary/Keyword: Micro-organism growth

Search Result 31, Processing Time 0.032 seconds

Inhibition of Proliferation of Cervical and Leukemic Cancer Cells by Penicillin G

  • Banerjee, Aditya;Dahiya, Meetu;Anand, M.T.;Kumar, Sudhir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2127-2130
    • /
    • 2013
  • Cancer, despite all the efforts, still causes one in five deaths worldwide. Surgery, chemotherapy and radiotherapy provide inadequate protection and instead affect normal cells along with cancer cells. The search for cancer cures from natural products (plants and animals) has been practice for over a decade and the use of purified chemical to treat cancer still continues. Several studies have been undertaken during last three decades to find the anti-cancerous property of various plant extract and toxins secreted by animals and micro-organism. These lead to the discovery of several promising molecule having anticancer activity, some of which are in clinical trial and may emerged to be a potential future drug in cancer therapy. In this study we have used penicillin to evaluate its anti-cancer activity. It shown significant effects at cellular and molecular levels against growth of HeLa and K562 cell lines.

The Reduction of "Off-flavor" in Cheonggukjang and Kimchi (청국장과 김치에서의 이취 발생과 저감화)

  • Hong, Eun-Jeung;Kim, Young-Jun;Noh, Bong-Soo
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.3
    • /
    • pp.324-333
    • /
    • 2010
  • Off-flavor in foods and in raw materials is quite concerning, as it could signify deeper-rooted problems. Methods of reduction of "off-flavors" in traditional food such as Cheonggukjan and Kimchi, and in raw materials of soybean paste were studied by means of a literature review. It was found that the major components of "off-flavor" were due to butyric acid, valeric acid, alkylpyrazines, ammonia, and sulfides for Cheonggukjang, and for Kimchi were sulfur containing components such as methyl allylsulfide, dimethyl disulfide, diallyl disulfide, methyl allyl trisulfide, methyl 2-propenyldisulfide, dipropenyldisulfide. There is a demand for a scientific and systematic approach in overcoming the "off-flavor" problem. Nutritional aspects and safety should be considered. Several methods have been attempted, such as masking, binding, improving cooking process, inhibiting rancidity, and controlling the growth of micro-organism. Methods of masking were the most frequently ones used for the reduction of "off-flavor", and in some cases, othertechniques were additionally applied. The masking method would be useful in the reduction of "off-flavor" in traditional Korean foods, i.e. Cheonggukjang, Kimchi, as well as in new product development.

Influence of Supplemental Enzymes, Yeast Culture and Effective Micro-organism Culture on Gut Micro-flora and Nutrient Digestion at Different Parts of the Rabbit Digestive Tract

  • Samarasinghe, K.;Shanmuganathan, T.;Silva, K.F.S.T.;Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.830-835
    • /
    • 2004
  • An experiment of 10 weeks duration was carried out to study the influence of supplemental effective microorganism (EM) culture, yeast culture and enzymes on nutrient digestibility and gut microflora in rabbit gastrointestinal (GI) tract. Twenty four eight to nine weeks old, New Zealand White rabbits were allotted to four dietary treatments; a basal (control) feed, basal feed supplemented with either EM (1%), yeast culture or enzymes (400 ppm). Nutrient flow in digesta and their digestibility at ileum, caecum, colon and in the total tract as well as gut microflora distribution were studied. Feed dry matter was diluted from 92% to about 14% up to the ileum and about 95% of this water was reabsorbed by the colonic rectal segment followed by caecum (25%). EM and yeast improved protein digestibility at a lower rate than enzymes. Ileal, caecal, colonic and total tract digestibility of crude protein with enzymes were higher by 10.8, 9.4, 11.3 and 10.7%, respectively, as compared to the control. Yeast and enzymes increased crude fiber digestibility at ileum, caecum, colon and in the total tract by 8.5, 9.6, 9.0 and 8.3%, respectively, while EM improved them at a lower rate. Irrespective of treatments, total tract digestibility of crude protein (0.698-0.773) and fiber (0.169-0.183) were greater (p<0.05) than the ileal digestibility. Even though a post-caecal protein digestibility was observed, fiber digestion seemed to be completed in the caecum especially with yeast and enzymes. High precaecal digestibility of crude fiber (97%) and protein (95%) were observed even without additives probably due to caecotrophy. EM and yeast culture promoted the growth of lactic acid bacteria especially in the caecum but they did not influence gut yeast and mould. Present findings reveal that even though rabbits digest nutrients efficiently through hind gut fermentation, they can be further enhanced by EM, yeast and enzymes. Of the three additives tested, enzymes found to be the best.

고등식물에 미치는 항생물질의 영향 (제4보) - 대두 Aminoacid metabolism에 미치는 항생물질의 영향에 대하여

  • 이민재;이영록
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.4-9
    • /
    • 1957
  • Effects of antibioties on micro-organism have been reported by many scientists, such as Krampitz and Werkman, Fisher, Gale and Rodwell, Klimick Cavalito and Bailey, Umbreit, etc. On the mechanism by which penicillin act, Fisher(1947), Platt(1947), and Cavallito, considered that penicillin might act on bacteria by inhibiting with the normal function of SH-group of glutathione in the metabolism of the cell. Resenbrance of penicillin to gultathione in structure and the inactivation of penicillin by cysteine make us approve of the above inhibiting theory of SH-group. Galland (1947) and Schmidt (1947) reported that penicillin inhibited the activity of ribonuclease, Phosphatase, and mononucleotidase. Gale (1948) discovered that the gram positive bacteria had lost the power to uptake glutamic acid by ribonucleic acid in the medium contained penicillin: growth of gram positive organism was inhibited by the results that penicillin inhibited the uptake of amino acid byribonucleic acid, acting on ribonucleic acid of gram positive bacteria. Hotchkiss (1950) cultured S. aureus in the medium contained glucose and amino acids, and studied the effect of penicillin on protein synthesis. Peptide formation in living cells was inhibited by penicillin, while amono acid was utilized as before the addition of penicillin. On the otherhand, Binkley (1951) found penicillin interfered hydrolase of glutath one, and Hans (1950) reported penicillin inhibited the transpeptidation. On the machanism by which streptomycin acts. Cohen (1947) reported steptomycin made a irreversible complex with desoxyribonucleic acid, by the fact that desoxyribonucleic acid formed the precipitates with diguanide group of steptomycin. Zeller (1951) reported, on the other hand, streptomycin inhibited diamine oxidease. Geiger (1947) and Umbreit (1949) reported that steptomycin inhibited condensation of oxaloacetate and pyruvate in E. Coli and Oginsky et al (1949) reported steptomycin inhibited oxaloacetate-pyruvate reaction in Kreb's cycle. On the mechanism by which terramycin acts, Hahn & Wisseman (1951) reported that the formation of adaptive enzyme was inhibited by terramycin in E. Coli cultivated in the medium contained loctose, and that the protein synthesis was inhibited by terramycin. However, effects of antibiotics on amino acid metabolism have not been discussed much in spite of its important role in living cells. Especislly, effects of anitibiotics on higher plants have scarcely been reported. Here, to prove the effect of antibiotics on higher plants, and the mechanism by which, through amino acid metabolism, they promote or inhibit growth of plants, amino acids in bean plants treated with penicillin, streptomycin, and terramycin were analyzed by paper chromatography. And to clarify the antagonis of cysteine (as SH-group) against penicillin, through amino acid metabolism, amino acids in bean plants treated with cystene and penicillin, at the same time, were also analyzed.

  • PDF

Genes Encoding Ribonucleoside Hydrolase 1 and 2 from Corynebacterium ammoniagenes

  • Lee, Jin-Ho;Kim, Hyun-Soo;Lee, Won-Sik;Park, Young-Hoon;Bang, Won-Gi
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2006.05a
    • /
    • pp.105-107
    • /
    • 2006
  • Two kinds of nucleoside hydrolases (NHs) encoded by rih1 and rih2 were cloned from Corynebacterium ammoniagenes using deoD- and gsk-defective Escherichia coli. Sequence analysis revealed that NH 1 was a protein of 337 aa with a deduced molecular mass of 35,892 Da, whereas NH 2 consisted of 308 aa with a calculated molecular mass of 32,310 Da. Experiments with crude extracts of IPTG-induced E. coli CGSC 6885(pTNU23) and 6885(pTNI12) indicated that the Rihl enzyme could catalyse the hydrolysis of uridine and cytidine and showed pyrimidine-specific ribonucleoside hydrolase activity. Rih2 was able to hydrolyse both purine and pyrimidine ribonucleosides with the following order of activity-inosine>adenosine>uridine>guanosine>xanthosine>cytidine-and was classified in the non-specific NHs family. rih1 and rih2 deletion mutants displayed a decrease in cell growth on minimal medium supplemented with pyrimidine and purine/pyrimidine nucleosides, respectively, compared with the wild-type strain. Growth of each mutant was substantially complemented by introducing rih1 and rih2, respectively. Furthermore, disruption of both rih1 and rih2 led to the inability of the mutant to utilize purine and pyrimidine nucleosides as sole carbon source on minimal medium. These results indicated that rih1 and rih2 play major roles in the salvage pathways of nucleosides in this micro-organism.

  • PDF

Apoptosis Induction of HCT-15 Cells by Extracts of Undaria pinnatifida with Fermented Micro-organism (미역 발효추출물의 HCT-15 대장암 세포 사멸 유도 효과)

  • Kim, Tae-Yun;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.28 no.4
    • /
    • pp.33-40
    • /
    • 2013
  • Objectives : To study the apoptosis effects of fermented Undaria pinnatifida extracts(FUP) against HCT-15 colon cancer cells. Method : By measuring cell proliferation, DNA fragmentation, cell cycle, morphology, and western blot from FUP, the study investigated the effects of the extractions had upon the HCT-15 colon cancer cells, and concluded that the inhibiting effects upon cells were induced by apoptosis. Result : FUP effectively inhibited the growth of HCT-15 colon cancer cells. After analyzing the DNA fragmentation, the study observed a DNA ladder, while examining the cells, and found an increase of sub-G1 hypodiploid cells. On the changes regarding the nucleus of the cells, a condensation of cells and chromatin, as well as an apoptotic body was clearly observed. By observing through western blot from FUP, the study found a decreased level of Bcl-2 from HCT-15 colon cancer cells, but the increased level of Bax and cleaved caspase-3, which as a result induced apoptosis, inhibiting the growth of HCT-15 colon cancer cells. FUP increased the natural death of HCT-15 colon cancer cells by the induction of apoptosis. FUP seemed to have no suppressing effect upon HL-60/MX2 cells. However, compared to the fucoidan, the study was able to clearly observe morphological changes of HCT-15 cells apoptosis, in a 1/2 concentration. Conclusion : FUP had antiproliferative effects on different kinds of cancer cells, while proving especially efficacious against colon cancer cells.

Organic Cucumber Productivity Affected by Long-term Application with Homemade Liquid Fertilizers (자가제조액비 장기연용 처리가 유기 오이의 생산성에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.1
    • /
    • pp.87-100
    • /
    • 2019
  • The study was initiated to compare crop productivity as affected by a long-term application with homemade liquid fertilizers in leading organic cucumber (Cucumis sativus L.) farms in Suncheon and Kimcheon provinces. A Suncheon farm have applied an EM (effective organism) liquid fertilizer for one year and fifteen years, designating as EM 1-year and EM 15-year plots, respectively, with 4-year and 5-year application of native microbes-liquid fertilizer in Kimcheon farm, designating as Micro 4-year and Micro 5-year plots, respectively. pH in the EM-liquid fertilizer was high to approximately 7.7, and EC in the Micro-liquid fertilizer was 0.1 dS/m higher than those of EM-liquid fertilizer, with similar macro-nutrient concentrations observed in the both liquid fertilizers. Soil EC was the highest to the 10.0 dS/m for the liquid fertilizer with EM 1-year and showed less than 1.5 dS/m for other liquid fertilizer plots. Micro-liquid fertilizer plots had soil OM contents less than 20 g/kg, which was approximately two times less than those of EM plots. Soil microbial properties were not significantly different among the liquid fertilizer plots. SPAD and PS II values were significantly increased by EM 15-year plots with high levels of soil OM and EC. Liquid fertilizer plot with EM 1-year had high concentrations of T-N, Ca, and Na in the cucumber crops but low concentrations of P and Mg, in particular for low K of 1.2% which was two times less than those of desired level for an optimum cucumber growth. The lowest fruit yield was observed for the liquid fertilizer plot with EM 1-year with the highest soil EC accumulated. Liquid fertilizer plot with EM 15-year produced the expanded volume of crop canopy and increased fruit yield. Therefore, long-term of continuous application with an organic liquid fertilizer would have sustainably improved soil stability and the crop productivity.

Plant Growth-promoting Ability by the Newly Isolated Bacterium Bacillus aerius MH1RS1 from Indigenous Plant in Sand Dune (해안 사구에서 서식하는 토착식물로부터 분리된 근권미생물 Bacillus aerius MH1RS1의 식물성장 촉진 능력 연구)

  • Lee, Eun Young;Hong, Sun Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.687-693
    • /
    • 2013
  • Coastal sand dunes have been seriously damaged caused by the development thoughtless for the environment and coastal erosion and destruction due to artificial structures like coast roads and breakwater. Hereupon, in this study we made a library of rhizobacteria that have the plant growth-promoting ability for plant rhizosphere of indigenous plants inhabiting in a coastal sand dune as well as the strong tolerance to salt, and evaluated the plant growth-promoting ability of these strains. Furthermore, we evaluated the effect of rhizobacteria on the growth rate of saline tolerant plants in sandy soil; selected out the most useful micro-organism for the restoration of a damaged sand dune. The effect of inoculation of strains selected from the first experiment on the growth of Peucedanum japonicum and Arundo donaxes planted in a coastal sand dune was evaluated. As a result, Bacillus aerius MH1RS1 had plant growth promoting activities: indole acetic acid (IAA) production, siderophores and 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) activity, and also had a salinity tolerance. Also, in case of Peucedanum japonicum, the length of stems and weights of roots were enhanced by the inoculation of B. aerius MH1RS1. Fresh weights of stems and weights of roots in experimental group were, in particular, increased by 25% comparing with the control group. For an Arundo donax in experimental group, plant length increased by 18%, and weight of roots by 20% which is significant.

Growth Response and Total Coliform Distribution of Spinach and Chinese Cabbage and Soil Quality by Irrigation of Domestic Wastewater (하수종말처리장 방류수를 밭작물 관개용수로 처리시 시금치와 배추의 생육, 대장균 분포 및 토양의 질 평가)

  • Cho, Jae-Young;Park, Seung-Woo;Son, Jae-Gwon;Park, Bong-Ju;Li, Long-Gen
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.2 s.31
    • /
    • pp.57-64
    • /
    • 2006
  • The experiment was carried out to determine the distribution of total coliform the translocation of heavy metals and the salt accumulation in soils following the supply of ground water, the domestic wastewater and the ultraviolet treatment of domestic wastewater during the spinach and the chinese cabbage cultivation. There were not much changes in the Total-N, Total-P and cations in soils following the ultraviolet treatment of the domestic wastewater. However, the density of total coliform was dramatically reduced from 894MPN/100mL to 5MPN/100mL. The diagnosis of composition of soil after the harvest of chinese cabbages and spinach has shown that the concentration of Na$^+$ was 3-4 times higher in plot using domestic wastewater than in plot using ground water. When domestic wastewater and ground water were used in growing spinach md chinese cabbage at 50% each, the application of chemical fertilizers reduced about 25% to 50% compared to the criteria set down by the Rural Development Administration and there was not significant difference in terms of harvest. Using non-ultraviolet treatment of domestic wastewater directly on spinach and chinese cabbage has resulted in excessive density of total coliform at 25,000MPN/100mL. Even when ultraviolet treatment, the density was still high at 2,000MPN/100mL. The high density of total coliform even following ultraviolet treatment of domestic wastewater is considered to be caused by photo-reactivation of micro-organism. When reusing domestic wastewater, the application of sterilization such as ultraviolet, ultrasonic and electron-beam for public health and hygiene reasons may provide safe supply of agricultural water.

A Study on the Architectural Application of Biological Patterns (생물학적 패턴의 건축적 적용에 관한 연구)

  • Kim, Won Gaff
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2012
  • The development of digital media made the change of architectural paradigm from tectonic to the surface and pattern. This means the transition to the new kind of materiality and the resurrection of ornament. This study started as an aim to apply biological pattern to architectural design from the new perception of pattern. Architectural patterns in the early era appeared as ladders, steps, chains, trees, vortices. But since 21st century, we can find patterns in nature like atoms and molecular structures, fluid forms of dynamics and new geometrical pattern like fractal and first of all biological patterns like viruses and micro-organisms, Voronoi cells, DNA structure, rhizomes and various hybrids and permutations of these. Pattern became one of the most important elements and themes of contemporary architecture through the change of materiality and resurrection of ornament with the new perception of surface in architecture. One of the patterns that give new creative availability to the architectural design is biological pattern which is self-organized as an optimum form through interaction with environment. Biological patterns emerge mostly as self-replicating patterns through morphogenesis, certain geometrical patterns(in particular triangles, pentagons, hexagons and spirals). The architectural application methods of biological patterns are direct figural pattern of organism, circle pattern, polygon pattern, energy-material control pattern, differentiation pattern, parametric pattern, growth principle pattern, evolutionary ecologic pattern. These patterns can be utilized as practical architectural patterns through the use of computer programs as morphogenetic programs like L-system, MoSS program and genetic algorithm programs like Grasshoper, Generative Components with the help of computing technology like mapping and scripting.

  • PDF