• Title/Summary/Keyword: Micro-nano fabrication technique

Search Result 49, Processing Time 0.029 seconds

Fabrication and Optimization of Mesoporous Platinum Electrodes for CMOS Integrated Enzymeless Glucose Sensor Applications (CMOS 집적회로 기반의 무효소 혈당센서 적용을 위한 메조포러스 백금 전극 제작 및 최적화)

  • Seo, Hye-K.;Park, Dae-J.;Park, Jae-Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1627-1628
    • /
    • 2006
  • In this paper, mesoporous only platinum electrode and micro pore platinum electrode with mesoporous Pt are fabricated and characterized on a silicon substrate to check their usability as enzymeless sensing electrodes for developing non-disposable glucose sensors integrated with silicon CMOS read out circuitry. Since most of electrochemical glucose sensors are disposable due to the use of the enzymes that are living creatures, these are limited to use in the in-vivo and continuous monitoring system applications. The proposed mesoporous Pt electrode with approximately 2.5nm in pore diameter and 150nm in height was fabricated by using a nonionic surfactant $C_{16}EO_8$ and an electroplating technique. The micro pore Pt electrode with mesoporous Pt means the mesoporous Pt electrode fabricated on top of micro pore arrayed Pt electrode with approximately $10{\mu}m$ in pore diameter and $80{\mu}m$ in height. The measured current responses at 10mM glucose solution of plane Pt, micro pore Pt, micro pore with mesoporus Pt, and mesoporous Pt electrodes are approximately $9.9nA/mm^2$, $92.4nA/mm^2$, $3320nA/mm^2$ and $44620nA/mm^2$, respectively. These data indicate that the mesoporous Pt electrode is much more sensitive than the other Pt electrodes. Thus, it is promising for non-disposable glucose sensor and electrochemical sensor applications.

  • PDF

Lithographic Microfabrication for Nano/Micro-Objects by using Two-Photon Polymerization Technique

  • Lee, Kwang-Sup;Kang, Seung-Wan;Kim, Ran-Hee;Kim, Ju-Yeon;Kim, Won-Jin;Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol;Sun, Hong-Bo;Kawata, Satoshi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.15-16
    • /
    • 2006
  • Since two-photon polymerization (TPP) emerged as a new technology over a decade ago, a large variety of micro-objects including 3-D micro-optical components, micromechanical devices, and 3-D photonic crystals have been fabricated using TPP with a high spatial resolution of approximately submicron scale to 100 nm. Recent efforts have been made to improve the fabrication efficiency and precision of micro-objects obtained with TPP; in particular, many studies have been carried out with the aim of developing efficient two-photon absorbing chromophores. In this presentation, we will discuss our efforts to develop highly efficient two-photon absorbing materials and also describe recent attempts to enhance the resolution and to improve the fabrication efficiency of nanofabrications based on TPP.

  • PDF

Fabrication Process of a Nano-precision Polydimethylsiloxane Replica using Vacuum Pressure-Difference Technique (진공 압력차이법에 의한 나노 정밀도를 가지는 폴리디메틸실록산 형상복제)

  • 박상후;임태우;양동열;공홍진;이광섭
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.305-313
    • /
    • 2004
  • A vacuum pressure-difference technique for making a nano-precision replica is investigated for various applications. Master patterns for replication were fabricated using a nano-replication printing (nRP) process. In the nRP process, any picture and pattern can be replicated from a bitmap figure file in the range of several micrometers with resolution of 200nm. A liquid-state monomer is solidified by two-photon absorption (TPA) induced by a femto-second laser according to a voxel matrix scanning. After polymerization, the remaining monomers were removed simply by using ethanol droplets. And then, a gold metal layer of about 30nm thickness was deposited on the fabricated master patterns prior to polydimethylsiloxane molding for preventing bonding between the master and the polydimethylsiloxane mold. A few gold particles attached on the polydimethylsiloxane stamp during detaching process were removed by a gold selecting etchant. After fabricating the polydimethylsiloxane mold, a nano-precision polydimethylsiloxane replica was reproduced. More precise replica was produced by the vacuum pressure-difference technique that is proposed in this paper. Through this study, direct patterning on a glass plate, replicating a polydimethylsiloxane mold, and reproducing polydimethylsiloxane replica are demonstrated with a vacuum pressure-difference technique for various micro/nano-applications.

Electrospun poly (lactic-co-glycolic acid)(PLGA) nanoparticles for controlled drug delivery system

  • Lee, Jue-Yeon;Lee, Meong-Hee;Park, Won-Ho;Min, Beong-Moo;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.227.2-228
    • /
    • 2003
  • In many biodegradable polymers recently investigated, poly(lactic acid)(PLA) or poly(lactic-co-glycolic acid)(PLGA) have extensively been utilized as drug delivery systems for sustained release drug delivery. Recently, there has been increased interest in electrospinning, which can produce fibers that are sub-micron in diameter. This technique has been applied to various micro/nano fabrication areas using numerous polymers but very few uses in the sharmaceutical area have been reported. (omitted)

  • PDF

Fabrication of Micropattern by Microcontact Printing (미세접촉인쇄기법을 이용한 미세패턴 제작)

  • 조정대;이응숙;최대근;양승만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1224-1226
    • /
    • 2003
  • In this work, we developed a high resolution printing technique based on transferring a pattern from a PDMS stamp to a Pd and Au substrate by microcontact printing Also, we fabricated various 2D metallic and polymeric nano patterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing (${\mu}$CP) based on soft lithography. Silicon masters for the micro molding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. From this work, it is certificated that composite PDMS mold and undercutting technique play an important role in the generation of a clear SAM nanopattern on Pd and Au substrate.

  • PDF

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • Byeon, Do-Yeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF

Fabrication of a Micro-thermoelectric Probe (마이크로 프로브 기반 열전 센서 제작 기술)

  • Chang, Won-Seok;Choi, Tae-Youl
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1133-1137
    • /
    • 2011
  • A novel technique for the fabrication of a glass micropipette-based thermal sensor was developed utilizing inexpensive thermocouple materials. Thermal fluctuation with a resolution of ${\pm}0.002$ K was measured using the fabricated thermal probe. The sensors comprise unleaded low-melting point solder alloy (Sn) as a core metal inside a borosilicate glass pipette coated with a thin film of Ni, creating a thermocouple junction at the tip. The sensor was calibrated using a thermally insulated calibration chamber, the temperature of which can be controlled with a precision of ${\pm}0.1$ K and the thermoelectric power (Seebeck coefficient) of the sensor was recorded from 8.46 to $8.86{\mu}V$/K. The sensor we have produced is both cost-effective and reliable for thermal conductivity measurements of micro-electromechanical systems (MEMS) and biological temperature sensing at the micron level.

Fabrication of Hot Embossing Plastic Stamps for Microstructures (마이크로 구조물 형성을 위한 핫 엠보싱용 플라스틱 스탬프 제작)

  • Cha Nam-Goo;Park Chang-Hwa;Lim Hyun-Woo;Park Jin-Goo;Jeong Jun-Ho;Lee Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.589-593
    • /
    • 2005
  • Nanoimprinting lithography (NIL) is known as a suitable technique for fabricating nano and micro structures of high definition. Hot embossing is one of NIL techniques and can imprint on thin films and bulk polymers. Key issues of hot embossing are time and expense needed to produce a stamp withstanding a high temperature and pressure. Fabrication of a metal stamp such as an electroplated nickel is cost intensive and time consuming. A ceramic stamp made by silicon is easy to break when the pressure is applied. In this paper, a plastic stamp using a high temperature epoxy was fabricated and tested. The plastic stamp was relatively inexpensive, rapid to produce and durable enough to withstanding multiple hot embossing cycles. The merits of low viscosity epoxy solutions were a fast degassing and a rapid filling the microstructures. The hot embossing process with plastic stamp was performed on PMMA substrates. The hot embossing was conducted at 12.6 bar, $120^{\circ}C$ and 10 minutes. An imprinted PMMA wafer was almost same value of the plastic stamp after 10 times embossing. Entire fabrication process from silicon master to plastic stamp was completed within 12 hours.

Color Adjustment Study by Micro-Pattern Embedding in Optical Multilayer Thin Film (다층광학필름에서 마이크로패턴 삽입을 통한 색 조정 연구)

  • Kim, Min;Woo, Ju Yeon;Yoon, Junho;Hwangbo, Chang Kwon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • It is well known that Morpho butterflies show distinctive, brilliant and iridescent colors and have micro-nano scale structures, instead of dyes and pigments, on their wings. This structural coloration is regarded as a novel technique to express color with a long lifetime, ease and precise tenability. Here, we studied optical multilayer thin films with thickness of several tens of nm ($TiO_2$ and $SiO_2$) and lens-shape micro-patterns. Fabrication and characterization of the multilayer stacking structure and the micro-pattern structure were performed and the films were analyzed via several optical measuring techniques. Finally, we discussed how the micro-pattern structure could enhance independence with color changes according to the viewing angle.

Ductile-Regime Nanopatterning on Pyrex 7740 Glass Surface and Its Application to the Fabrication of Positive-tone PDMS Stamp for Microcontact Printing (${\mu}CP$) (미소접촉인쇄 공정용 철형 PDMS 스템프 제작을 위한 Pyrex 7740 glass 표면의 연성영역 나노패터닝)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.40-43
    • /
    • 2004
  • Stamps for microcontact processing are fabricated by casting elastomer such as PDMS on a master with a negative of the desired pattern. After curing, the PDMS stamp is peeled away from the master and exposed to a solution of ink and then dried. Transfer of the ink from the PDMS stamp to the substrate occurs during a brief contact between stamp and substrate. Generally, negative-tone masters, which are used for making positive-tone PDMS stamps, are fabricated by using photolithographic technique. The shortcomings of photolithography are a relative high-cost process and require extensive processing time and heavy capital investment to build and maintain the fabrication facilities. The goal of this study is to fabricate a negative-tone master by using Nano-indenter based patterning technique. Various sizes of V-grooves and U-groove were fabricated by using the combination of nanoscratch and HF isotropic etching technique. An achieved negative-tone structure was used as a master in the PDMS replica molding process to fabricate a positive-tone PDMS stamp.

  • PDF