• Title/Summary/Keyword: Micro-mold method

Search Result 138, Processing Time 0.032 seconds

A Basic Study of replication and brightness for micro injection molding with ${\sim}50{\mu}m$ micro-lens pattern mold ($50{\mu}m$ Microlens 패턴 금형의 미세사출성형 전사성과 전광특성 기초연구)

  • Hwang C. J.;Ko Y. B.;Heo Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.280-283
    • /
    • 2004
  • Micro-lens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LGP optical design, micro-lens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. During injection molding process, experimental study was conducted to improve replication quality and brightness of ${\sim}50um$ micro-lens pattern mold. The effect of mold temperature for the replication quality of micro-lens array was studied.

  • PDF

Development of Nano Mold and Injection molder for Nano system (나노 시스템 사출을 위한 차세대 전동식 사출기 개발 및 이를 위한 나노 몰드 개발)

  • 황교일;류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.189-192
    • /
    • 2002
  • Recently, micro-nano system is fabricated by photolithograph method. This method can not have mass production, so this method wastes time and human effort. accordingly, the aim of this paper is to research on injection molding of micro-nano system. For injection molding process, development of micro-nano mold is required. Mold for injection mold process is maintained its shape in high pressure and temperature. So in this paper, we studied the simulation of mold fur injection molding and then we consider a result of injection molding simulation.

  • PDF

A Study on the Machining Characteristics for Micro Lens Array Mold (마이크로 렌즈 어레이 금형의 가공특성에 관한 연구)

  • 정재엽;이동주;홍성민;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.370-375
    • /
    • 2002
  • Recently, the interest on micro optical parts has increased rapidly with the development of technology related to microsystems. Among the optical parts, micro lens is one of the most broadly used micro parts. To mass-produce the micro lenses, it is very effective to use the mold insert and injection molding process. There are many methods to fabricate the mold insert for micro lenses: electroforming, etching, mechanical micromachining and so on. In this study, we fabricated the mold insert for micro lenses using a micro ball endmill to apply mechanical micromaching method and analyzed the effect of main process parameters such as spindle speed, feed rate, dwell time on the processed surface. Then, using fabricated the mold insert we fabricated the micro lenses through injection molding process.

  • PDF

The Micro Lens Mold Processing in Mechanical Fabrication Method (기계적인 가공방법에 의한 마이크로 렌즈 금형가공)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

Development of micro-mold for New Injecton Molder to fabricate Micro-Nano system (Micro-Nano 시스템 제조를 위한 소형 차세대 사출기 개발과 이를 위한 Micro meld의 개발)

  • 황교일;류경주;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.910-913
    • /
    • 2002
  • Recently, the sensor and actuator are developed with EAP(Electro Active Polymer). Common used of they is close at hand, the bio chip and Lab on a chip are researched. For developed bio and micro system, a researcher applies semiconductor fabrication or make it by his hand. But, this method takes long time and a tolerance is large So they are problem of common used. So In this paper we propose the new inject ion molder and micro mold. The micro mold is different from exist ing mold. In this paper, the fabration of micro mold is introduced to inject.

  • PDF

Micro-lens Patterned LGP Injection Mold Fabrication by LIGA-reflow Process (LIGA-reflow 응용 Micro-lens Pattern 도광판 금형 제작)

  • Hwang C.J.;Kim J.D.;Chung J.W.;Ha S.Y.;Lee K.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.241-244
    • /
    • 2004
  • Microlens patterned micro-mold fabrication method for Light Guiding Plate(LGP), kernel part of LCD-BLU(Back Light Unit), was presented. Instead of erosion dot pattern for LCP optical design, microlens pattern, fabricated by LIGA-reflow process, was applied. Optical pattern design method was also developed not only for negative pattern LGP, but also positive pattern LGP. In order to achieve flow balance during the micro-injection molding process and dimensional accuracy, two LGP pattern was made in one micro-mold.

  • PDF

A Study on the Injection Molding Technology by Micro Multi-Square Strucrure Mold (다중 미세 각주 구조물의 사출성형기술 연구)

  • 제태진;신보성;박순섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1061-1064
    • /
    • 1997
  • Micro injection molding technology is very important fiw mass product of micro structures or micro parts. And, it is so difficult that the molding technology of micro pole or thin wall(barrier rib) structures with high aspect ratio. In this stud). \vc intend to research on the basic technology of micro wall structure part:< with high aspect ratio by the inject~on moldins method. The mold for esperimenrs with micro multi-square structures was made by L, I(;A process. One square polc's size is 157 157pm. height 50011111. And the distance of each poles is 5011n1. 7'hus. molding products will be for~nctl like as the net structure with thin wall of about 50pn thickness.(aspect ratio 10) Ihrough the e~lxriment. \be obtained the prociuctr of micro multi-square slructure with bout 37.000 cell per a piece. 'Ihe micro injection molding process technolog for thin wall by multi-square structure mold was analy~cd.

  • PDF

Localized Induction-Heating Method by the Use of Selective Mold Material (재료의 선택적 사용에 의한 금형의 국부적 유도가열기법)

  • Park, Keun;Do, Bum-Suk;Park, Jung-Min;Lee, Sang-Ik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

A Study on the Manufacturing Characteristics for Micro Spherical Lens Mold of Soft Materials (연질재료의 마이크로 구형렌즈금형 가공특성에 관한 연구)

  • 홍성민;이동주;제태진;최두선;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1466-1469
    • /
    • 2004
  • Micro spherical lens mold processing method based on mechanical one completes a spherical shape by setting a diamond tool of hundreds $\mu$m radius on spins with high speed and then using Z-axis vertical feeding motion like the fabrication of micro drilling. In this method, we can see unprocessed parts shaped like cylinder and cone and check increasing chatter marks and burrs by setting errors of the central axis of rotation on the edge of the tool. That is why this method doesn't suit for the optical lens mold. In this paper presents unprocessed parts are disappeared and chatter marks and burrs are decreased from centre of the lens after using Run-out measuring and setting system on run-out occurred from setting tool. Also the fabrication characteristics of 6:4 Brass, A1601, PMMA are compared and analyzed, establishing the optimum machining condition on each material.

  • PDF

Fabrication of micro structure mold using SLS Rapid Prototyping (SLS형 쾌속조형기를 이용한 미세구조 몰드 제작)

  • 유홍진;김동학;장석원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2004
  • By this time, a mold with nano size pattern was produced using a fabrication of X-ray lithography method and in a m icro size's case it was produced using fabrication of Deep UV lithography. In this paper, we produced mold with 400 $\mu{m}$depth pattern using a new technology of SLS(Selective Laser Sintering) Rapid Prototyping method. In addition to enhance strength and thermal stability, we produced Ni structure with a thickness of 300 $\mu{m}$ on a surface of mold using electro forming method.

  • PDF