• 제목/요약/키워드: Micro-mold insert

검색결과 21건 처리시간 0.031초

Micro-molding of microlens array using electroformed mold insert

  • LEE NAMSUK;MOON SU-DONG;KANG SHINILL
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The Korea-Japan Plastics Processing Joint Seminar
    • /
    • pp.15-19
    • /
    • 2003
  • Polymeric micro lens arrays with diameters of $13\~96\;{\mu}m$ fabricated using the micro-compression molding with electro formed mold inserts. In the present study, the electro forming process was used to make the metallic micro-mold insert for micro-molding of microlens array. The wettability property of the fabricated mold insert was examined by measuring the contact angle of the polymer melt on the mold insert. Microlenses were compression-molded with the fabricated mold insert. The effects of the molding temperature and wettability property on the replication quality of the molded lenses were analyzed experimentally.

  • PDF

마이크로 렌즈 어레이 금형의 가공특성에 관한 연구 (A Study on the Machining Characteristics for Micro Lens Array Mold)

  • 정재엽;이동주;홍성민;제태진;이응숙
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.370-375
    • /
    • 2002
  • Recently, the interest on micro optical parts has increased rapidly with the development of technology related to microsystems. Among the optical parts, micro lens is one of the most broadly used micro parts. To mass-produce the micro lenses, it is very effective to use the mold insert and injection molding process. There are many methods to fabricate the mold insert for micro lenses: electroforming, etching, mechanical micromachining and so on. In this study, we fabricated the mold insert for micro lenses using a micro ball endmill to apply mechanical micromaching method and analyzed the effect of main process parameters such as spindle speed, feed rate, dwell time on the processed surface. Then, using fabricated the mold insert we fabricated the micro lenses through injection molding process.

  • PDF

마이크로 패턴 성형을 위한 인서트 코어 적용 µ-PIM 표준금형 개발에 관한 연구 (Development of µ-PIM standard mold with exchangable insert core in order to manufacture micro pattern)

  • 박치열;서찬열;김용대
    • Design & Manufacturing
    • /
    • 제11권3호
    • /
    • pp.29-34
    • /
    • 2017
  • Increased demand for parts with micro-pattern structure made of metals, ceramics, and composites in various fields such as medical ultrasonic sensors, CT collimators, and ultra-small actuator parts. Micro powder injection molding (PIM) is a technology for manufacturing micro size, high volume, complex, precision, net-shape components from either metal or ceramic powder. In the present study, a standard mold with a variable insert core capable of producing various micro patterns was investigated. An injection molding test was performed on a standard mold using a line type micro-pattern core having an aspect ratio of 2, a slenderness ratio of 70, a pattern size of $200{\mu}m$, and a pattern spacing of $150{\mu}m$. During the filling process, the deformation of the mold with large aspect ratio and slenderness ratio was analyzed by the experiment and the numerical simulation according to the position of the gate. We proposed a mold structure that minimizes mold deformation by gate modification and enables uniform pattern filling behavior.

Electroforming 공정을 이용한 마이크로 렌즈용 몰드 인서트의 제작 (Fabrication of Mold-insert for Micro-lens Using Electroforming Process)

  • 이남석;문수동;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2002
  • Micromolding methods are most suitable for mass production of plastic microlens and lens array with low cost. Among the procedures related with micromolding of microlens array, fabrication of mold insect which contains micro cavity of lens shape is the most important stage. In this study, nickel mold inserts for 45 $\mu\textrm{m}$ and 95 $\mu\textrm{m}$ diameters lens way were fabricated using electroforming process. The mother for metal mold inset was made using reflow method. A micro compression molding with polymer powders was used to test the qualities of the metal mold insets. Micro lens profile and surface roughness was measured by interferometric technique and AFM, respectively. The final molded lens replicated the mother well, and had good surface quality.

  • PDF

전주금형 제작을 위한 폴리머의 엑시머 레이저 어블레이션 (Excimer Laser Ablation of Polymer for Electroformed Mold)

  • 이제훈;신동식;서정;김도훈
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.13-20
    • /
    • 2004
  • Manufacturing process for the microfluidic device can include such sequential steps as master fabrication, electroforming, and injection molding. The laser ablation using masks has been applied to the fabrication of channels in microfluidic devices. In this study, manufacturing of polymer master and mold insert for micro injection molding was investigated. Ablation of PET (polyethylene terephthalate) by the excimer laser radiation could be used successfully to make three dimensional master fur nickel mold insert. The mechanism fur ablative decomposition of PET with KrF excimer laser $({\lambda}: 248 nm, pulse duration: 5 ns)$ was explained by photochemical process, while ablation mechanism of PMMA (polymethyl methacrylate) is dominated by photothermal process, the .eaction between PC (polycarbonate) and KrF excimer laser beam generate too much su.face debris. Thus, PET was adopted in polymer master for nickel mold insert. Nickel electroforming using laser ablated PET master was preferable for replication method. Finally, it was shown that excimer laser ablation can substitute for X-ray lithography of LIGA process in microstructuring.

박판 Insert 사출성형시 Insert 변형 특성에 관한 기초 연구 (A basic study on insert deformation characteristics of thin foil insert injection molding process)

  • 정우철;신광호;허영무;윤길상;이정원
    • Design & Manufacturing
    • /
    • 제2권5호
    • /
    • pp.5-10
    • /
    • 2008
  • Recently, ultra precision and light-weight micro products are needed in various industries. Injection molding products with metal insert material is often satisfied with light-weight and precision simultaneously. The researches on macro-size insert deformation have been performed but, a research on micro-size insert is meager. In this paper, the injection molding product with $300{\mu}m$ thin foil insert is designed and insert injection molding process is performed. Finally, the deformation of thin foil insert is analyzed according to insert feature and gate length.

  • PDF

미세압축성형을 통한 플라스틱 미세렌즈의 성형 (Fabrication of micro lens array using micro-compression molding)

  • 문수동;강신일;이영주;부종욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

미세압축성형을 통한 플라스틱 미세렌즈의 성형 (Fabrication of Micro Lens Array Using Micro-Compression Molding)

  • 강신일;문수동;이영주;부종욱
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

초발수 곡면표면 실리콘 사출금형성형기술 (Silicone Injection Mold & Molding Technology for Super-hydrophobic Curved Surface)

  • 이성희;강정진;이종원;홍석관;고종수;이제훈;노지환
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.13-18
    • /
    • 2012
  • In this study, silicone injection molding technology with curved thermoplastic insert was developed to produce super-hydrophobic surface. Thermoplastic insert part and injection mold design of base plastic cover were performed to produce cost effective hydrophobic surface part. An optimization process of part thickness for thermoplastic insert part was performed with transient thermal analysis under silicone over-molding process condition. Structural thermal analysis of silicone injection mold was also performed to obtain uniform temperature condition on the surface of micro-patterned mold core. Super-hydrophobic surface for the silicone injection molded part with thermoplastic insert could be verified from the measurement of contact angle. It was shown that the averaged contact angle was over $140^{\circ}$.

플라스틱 마이크로 채널 기판 사출성형 시 보압의 영향 (Effects of Packing Pressure and Time on Injection Molding of Plastic Micro-channel Plates)

  • 우상원;박시환
    • 한국생산제조학회지
    • /
    • 제25권3호
    • /
    • pp.224-229
    • /
    • 2016
  • Recently, polymeric micro-fluidic biochips with numerous micro patterns on the surface were fabricated by injection molding for realizing low-cost mass production of devices. To evaluate the effects of process parameters on large-scale micro-structure replication, a $50{\times}50mm^2$ tool insert with surface structures having a patterns of trapezoidal shapes (height: $30{\mu}m$) was employed. During injection molding, PMMA was used; packing phase parameters and mold temperature were investigated. The replicated surface textures were quantitatively characterized by confocal laser microscopy with 10-nm resolution. The degree of replication at low mold temperatures was found to be higher than that at high mold temperature at the beginning of the packing stage. Thereafter, the degree of replication increased to a greater extent at higher mold temperatures; application of higher mold temperatures improved the degree of replication.