• Title/Summary/Keyword: Micro-hybrid

Search Result 347, Processing Time 0.022 seconds

Thermal analysis on composite girder with hybrid GFRP-concrete deck

  • Xin, Haohui;Liu, Yuqing;Du, Ao
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1221-1236
    • /
    • 2015
  • Since the coefficients of thermal expansion (CTE) between concrete and GFRP, steel and GFRP are quite different, GFRP laminates with different laminas stacking-sequence present different thermal behavior and currently there is no specification on mechanical properties of GFRP laminates, it is necessary to investigate the thermal influence on composite girder with stay-in-place (SIP) bridge deck at different levels and on different scales. This paper experimentally and theoretically investigated the CTE of GFRP at lamina's and laminate's level on micro-mechanics scales. The theoretical CTE values of laminas and laminates agreed well with test results, indicating that designers could obtain thermal properties of GFRP laminates with different lamina stacking-sequence through micro-mechanics methods. On the basis of the CTE tests and theoretical analysis, the thermal behaviors of composite girder with hybrid GFRP-concrete deck were studied numerically and theoretically on macro-mechanics scales. The theoretical results of concrete and steel components of composite girder agreed well with FE results, but the theoretical results of GFRP profiles were slightly larger than FE and tended to be conservative at a safety level.

Fire resistance of hybrid fiber reinforced SCC: Effect of use of polyvinyl-alcohol or polypropylene with single and binary steel fiber

  • Kazim Turk;Ceren Kina;Esma Balalan
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • This study presents the experimental results performed to evaluate the effects of Polyvinyl-alcohol (PVA) and Polypropylene (PP) fibers on the fresh and residual mechanical properties of the hybrid fiber reinforced SCC before and after the exposure of 250℃, 500℃ and 750℃ temperatures. The compressive and splitting tensile strength, modulus of rupture (MOR), ultrasonic pulse velocity (UPV) as well as toughness and weight loss were investigated at different temperatures. PVA and PP fibers were added into SCC mixtures having only macro steel fiber and also having binary hybridization of both macro and micro steel fiber. The results showed that the use of micro steel fiber replaced by macro steel fiber improved the fresh and hardened properties compared to the use of only macro steel fiber. Moreover, it was emphasized that PVA or PP enhanced the residual flexural performance of SCC, generally, while it negatively influenced the workability, weight loss, UPV and the residual strengths with regards to the use of single steel fiber and binary steel fiber hybridization. Compared to the effect of synthetic fibers, PP had slightly more positive effect in the view of workability while PVA enhanced the residual mechanical properties more.

Laser Microfabrication for Silicon Restrictor

  • Kim, Kwang-Ryul;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.

Material properties and machining performance of CNT and Graphene reinforced hybrid alumina composites for micro electrical discharge machining (탄소나노튜브와 그래핀 강화 하이브리드 알루미나 복합재료의 재료특성 및 마이크로방전가공 성능)

  • Sung, Jin-Woo;Kim, Nam-Kyung;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.3-9
    • /
    • 2013
  • Aluminum Oxide($Al_2O_3$) ceramics are excellent candidates for such applications due to their outstanding mechanical, thermal, and tribological properties. However, they are difficult to machine using conventional mechanical methods. Carbon fillers, such as carbon nanotubes(CNT) and graphene nanoplatelets(GNP)can be dispersed in a ceramic matrix to improve the mechanical and electrical properties. In this study, CNT and Graphene reinforced hybrid ceramic composites were fabricated using the spark plasma sintering method at a temperature of $1,500^{\circ}C$, pressure of 40 MPa, and soaking time of 10min. Besides this, the material properties such as microstructure, crystal structure, hardness, and electrical conductivity were analyzed using FE-SEM, XRD, Vickers, and the 4-point probe method. A micro machining test was carried out to compare the effects of the material properties and the machining performance for CNT and Graphene reinforced ceramic composites.

The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab

  • Cao, Mingli;Xie, Chaopeng;Li, Li;Khan, Mehran
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.481-492
    • /
    • 2018
  • In this paper, a new hybrid fiber system (NHFS) is investigated for the application of slab. The steel fiber, polyvinyl alcohol (PVA) fiber and calcium carbonate ($CaCO_3$) whisker is added to form NHFS. The four-point bending test is carried out on the flexural properties of slab with plain, steel fiber, traditional hybrid fiber system (THFS) and NHFS reinforced cementitious composites. The flexural behavior is evaluated by ASTM C1018-97, JCI-SF4 and post-crack strength (PCS) technique. The evaluation parameters of flexural toughness such as toughness index (TI), equivalent flexural strength (EFS) and PCS are determined. The size of slab specimens is $15mm(thickness){\times}50mm(width){\times}200mm(length)$. The results show that adding $CaCO_3$ whisker to THFS can significantly improve the flexural strength, TI, EFS, PCS of the slab. The empirical relation between reinforcing index ($RI_v$) and flexural parameters show that flexural parameters of slabs increase first and then decrease; which indicates that optimum $RI_v$ values can be helpful in the considering the mix design of steel-PVA fibers-$CaCO_3$ whisker composites for achieving the desired flexural-related properties. The scanning electron microscopy is performed to observe the micro-morphological characteristics of the fracture surface, which proved the positive hybrid effect among the different fibers in cementitious composites. The NHFS can arrest the generation and propagation of the crack from micro to macro level.

Technology of thin Film Formation by Using the Micro Gravure Coater (마이크로 그라비어 코터를 이용한 박막 형성 기술)

  • Kim, Dong Soo;Kim, Jung Su;Bae, Sung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.596-600
    • /
    • 2013
  • We report here on the processing and manufacturing of thin film for printed electronics by micro-gravure coating system. The micro-gravure coating systems are consisted of various modules such as web and system tension controller, micro-gravure coating units, dispenser and hybrid dry units (UV, NIR, Hot air). Especially, for the optimization of system, the number of idle roller was minimized and tension isolating infeeder was included. Also, we applied four patterns circle, 45 degree, square and 35 degree for the optimizing coating thickness. The micro-gravure coating system which applied various patterns to enable continuous coating process and fast coating time compare with conventional batch coating system. In this paper, introduce of micro-gravure coating system and testing results of coating thickness (20~700nm), coating time (1~2sec) and surface roughness (3~12nm) by using micro-gravure coating system.

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.