• Title/Summary/Keyword: Micro-display

Search Result 479, Processing Time 0.032 seconds

The Micro Lens Mold Processing in Mechanical Fabrication Method (기계적인 가공방법에 의한 마이크로 렌즈 금형가공)

  • 정재엽;이동주;제태진;최두선;이응숙;홍성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1885-1888
    • /
    • 2003
  • As high technology industries such as IT and display have developed, demand for application parts of micro lens and lens array has been extremely increasing. According to these trends, many researchers are studying on the fabrication technology for parts of the micro lens by a variety of methods such as MEMS, Lithography, LIGA and so on. In this paper, we have performed researches related to ultra precision micro lens, lens array mold and fabrication of Lenticular lens mold for three-dimensional display by using mechanical micro end-milling and fly-cutting fabrication method. Tools used in this research were a diamond tool of R 150$\mu\textrm{m}$. Cutting conditions set up feed rate, spindle revolution. depth of cut and dwell time as variables. And we analyzed surface quality variation of the processed products according to the cutting conditions, and then carried out experiments to search the optimum conditions. Through this research, we have confirmed that we can fabricate the ultra precision micro lens mold with surface roughness Ra=20nm and the holographic lens mold by using micro end-milling and fly-cutting fabrication method. Furthermore, we demonstrated problems happened in the fabrication of the micro lens and established the foundation of experimental study for formulating its improvement plan.

  • PDF

Development of UV-curable paste for micro mold transfer process of barrier ribs of PDPs

  • Kim, Yoo-Seong;Koh, Tae-geum;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.917-920
    • /
    • 2006
  • In an attempt to reduce processing cost and to improve resolution of PDPs, micro mold transfer processing route for barrier ribs of plasma display panel was developed. In this study, the parameters that may cause defects during the process were identified, which include the shrinkage during UV curing process, stress due to evaporation of organic components, and sintering shrinkage. Considering such parameters, UV curable paste was developed and barrier ribs of PDPs were successfully processed via the process. In addition, the process was successfully applied for the processing of barrier ribs with embedded counter electrodes.

  • PDF

The Study of Accelerated Life Test for Micro Display Device (마이크로 디스플레이 디바이스의 가속수명시험에 관한 연구)

  • 차상목;윤성록;조여욱
    • Journal of Applied Reliability
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • This paper is concerned about an Accelerated Life Test for Micro Display Device which is being used in a Projection TV, in order to find a failure mode occurred in field in a short time, to identify a major factor to affect a life, and to estimate a mean life. For this purpose, we selected a temperature as a accelerated factor to perform a test and measured degradation of display device using visual inspection and chromaticity table. In the result of Accelerated Life Test, it is confirmed that failure mode is equal to the degradation of display device by vendor and the Temperature is a major factor to affect a failure. Besides, according as the display device is turned to green as degraded, it is identified that the change of the chromaticity value is one method to measure the degree of the degradation . So, we applied the optimal condition, which consider a cost and life to lower the Temperature which is a major factor acquired by the result of ALT, to PTV design

  • PDF

A Study on the Gray Scale Method of Digital LCOS Micro-display for Pico-projector Application (초소형 프로젝터를 위한 디지털 LCOS 마이크로 디스플레이의 계조 연구)

  • Kim, Min-Seok;Kang, Jung-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.87-90
    • /
    • 2010
  • A new SRAM pixel circuit with RESET Transistor of a LCOS display module was designed for a pico-projector application. A dual-block PWM method was also proposed to realize the field sequential color system having only one LCOS panel. 0.29 inch LCOS panel in SVGA resolution was fabricated and the proposed dual-block PWM method was tested with it. Discontinuity of brightness curve was caused due to multi-pulses and it was improved by the adoption of proper mapping table. With the proposed SRAM with RESET pixel circuit and dual-block PWM method, the test images were successfully demonstrated.

A Study on Performance Evaluation of Typical Classification Techniques for Micro-cracks of Silicon Wafer (실리콘 웨이퍼 마이크로크랙을 위한 대표적 분류 기술의 성능 평가에 관한 연구)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Silicon wafer is one of main materials in solar cell. Micro-cracks in silicon wafer are one of reasons to decrease efficiency of energy transformation. They couldn't be observed by human eye. Also, their shape is not only various but also complicated. Accordingly, their shape classification is absolutely needed for manufacturing process quality and its feedback. The performance of typical classification techniques which is principal component analysis(PCA), neural network, fusion model to integrate PCA with neural network, and support vector machine(SVM), are evaluated using pattern features of micro-cracks. As a result, it has been confirmed that the SVM gives good results in micro-crack classification.

A Cloud-based Infusion Injector using Piezoelectric Micropump (피에조마이크로펌프를 이용한 클라우드기반 수액주입기)

  • Song, Young-Jin;Kang, Jung-Gu;Song, Geun-San
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.62-65
    • /
    • 2018
  • We will provides a micro-pump infusion injector with the cloud networking for remote control. The existing infusion injector with controlled manually have an uncomfortable to use it inconveniently. The proposed remote control infusion, infusion system enables the identification and control of injected amount through the IOT function on th WEB. The micro-pump used is a piezo electric pump manufactured by using MEMS technology, and the amount of charge is varied depending on the frequency magnitude through the micro-controller. The micro-pump can adjust the speed of the fluid depending on the frequency and can be from 0.1ml / min to 7ml / min when the frequency is from 3 to 110Hz.

The study on micro discharge characteristics for DC Plasma Display (직류 플라즈마 디스플레이를 위한 미소방전특성연구)

  • Cho, Jung-Soo;Park, Chung-Hoo;Kim, Gyu-Sub;Kawk, Byung-Goo;Ha, Hong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1413-1416
    • /
    • 1995
  • Plasma Display(PDP) was successfully demonstrated on 30-60inch display panel. Research for mass production is also been accelerating. The basic study of PDP are mainly focused on understanding of micro discharge in each cell In this paper, DC PDP with Ag electrode is made and the discharge charcateristics in micro gap is studied with the variation of the distance of electrode gap and the pressure in discharge cell.

  • PDF

Lens system design for head mounted display using schematic eyes (정밀모형안을 이용한 Head Mounted Display용 렌즈계 설계)

  • 박성찬;안현경
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.236-243
    • /
    • 2003
  • We discussed the design of lens module schematic eyes equivalent to finite model eyes, which are used to model the human eye based on spherical aberration and Stiles-Crowford effect. The optical system for head mounted display (HMD) is designed and evaluated using lens module schematic eyes. In addition to a compact HMD system, an optical system with high Performance is required. To satisfy these requirements, we used diffractive optical elements and aspheric surfaces so that the color and mono-chromatic aberrations were corrected. The optical system for HMD is composed of 0.47 inch micro-display of SVGA grade with 480,000 pixels, a plastic hybrid lens for the virtual image, and the lens module schematic eyes. The designed optical system fulfills the current specifications of HMD: such as, EFL of 31.25 mm, FOV of 24H$\times$18V$\times$30D degrees, and overall length of 59.1 mm. As a result, we could design an optical system useful for HMD; the system is expected to be comfortable while the user wears it.