• Title/Summary/Keyword: Micro-alloying forging steel

Search Result 4, Processing Time 0.019 seconds

Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel (비조질강의 바우싱거 효과에 미치는 변형율 영향)

  • Kwon Y.-N.;Lee Y. S.;Kim S. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

The effect of micro-alloying steel characteristics on the multi-stage forging process (다단 냉간 단조에 미치는 냉간비조질강의 특성에 관한 연구)

  • Lee S. H.;Lee K. T.;Kwon Y. N.;Kim J. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.317-320
    • /
    • 2005
  • The micro-alloying forging steels have been developed to save energy consumption during forging and subsequent heat treatment stages. The work hardening ability of micro-alloying forging steels is one of major hardening component while it gives severe die damage if the forging process design is poorly set up on the other hand. In the present study, it was tried to characterize three types of micro-alloying forging steels to understand the differences with the conventional low carbon steels used fur cold forging with a spherodizing heat treatment. After forging of a certain forging part with both micro-alloying forging steels and conventional low carbon steel, several mechanical tests were carried out.

  • PDF

A Study on Forging Characteristic of Non-Heat Treated Micro-Alloyed Steel Using Finite Element Analysis (유한요소해석을 통한 비조질강 성형 특성 분석)

  • Kwon, Yong-Nam;Kim, S.W.;Lee, Y.S.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.609-614
    • /
    • 2006
  • Micro-alloyed steels(MA steels) for cold forging was developed to replace the usual quenched and tempered steel. MA steels have several advantages over the conventional quenched and tempered carbon steels. First of all, energy consumption could be lowered due to the elimination of spherodizing annealing and quenching/tempering heat treatment. Also, bending during quenching could be avoided when MA steels are applied for manufacturing of long fastener parts. However, larger amount of load is exerted on the dies compared than in the case of conventional mild steels, which might lead to the earlier fracture of dies, when MA forging steels are applied in forging practice. Therefore, die lift could be a critical factor to determine whether HA forging steels could be widely applied in cold forging practice. In the present study, authors have investigated the forging characteristics of non-heat treated micro-alloyed steel by using a series of experimental and numerical analyses. Firstly, microstructural features and its effect on the deformation behavior have been studied. Numerical analysis has been done on the forging of guide rod pin to investigate for the optimization of forging process and die stress prediction.

Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging (직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향)

  • Shin, Jung-Ho;Ryu, Young-Joo;Kim, Byung-Ok;Ko, In-Yong;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.