• Title/Summary/Keyword: Micro-Tube

Search Result 301, Processing Time 0.031 seconds

A Numerical Study on Operating Characteristics of a Miniature Joule-Thomson Refrigerator

  • Hong, Yong-Ju;Park, Seong-Je;Choi, Young-Don
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.41-45
    • /
    • 2010
  • Miniature Joule-Thomson refrigerators have been widely used for rapid cooling of infrared detectors, optoelectronic device, and integrated circuits of micro electronics. The typical J-T refrigerator consists of the recuperative heat exchanger with the double helical tube and fin configuration, J-T nozzle, a mandrel, Dewar and a compressed gas storage bottle. In this study, to predict the thermodynamic behaviors of the refrigerator with a compressed gas storage bottle during the cool-down time, numerical study of transient characteristics for a J-T refrigerator was developed. A simplified transient one.dimensional model of the momentum and energy equations was simultaneously solved to consider the thermal interactions of the each component of the refrigerator. To account for effects of the thermal mass of the solid, the heat capacities of the tube, fins, mandrel and Dewar are considered. The results show the charged gas pressure of the gas storage bottle has significant effects on the performance of the J-T refrigerator. At the elevated gas pressure of the gas storage bottle, the large capacity of the compressed gas storage does not need to get the fast cool-down performance of the J-T refrigerator in the cool-down stage.

Evaluation of Image Quality in Micro-CT System Using Constrained Total Variation (TV) Minimization (Micro-CT 시스템에서 제한된 조건의 Total Variation (TV) Minimization을 이용한 영상화질 평가)

  • Jo, Byung-Du;Choi, Jong-Hwa;Kim, Yun-Hwan;Lee, Kyung-Ho;Kim, Dae-Hong;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.252-260
    • /
    • 2012
  • The reduction of radiation dose from x-ray is a main concern in computed tomography (CT) imaging due to the side-effect of the dose on human body. Recently, the various methods for dose reduction have been studied in CT and one of the method is a iterative reconstruction based on total variation (TV) minimization at few-views data. In this paper, we evaluated the image quality between total variation (TV) minimization algorithm and Feldkam-Davis-kress (FDK) algorithm in micro computed tomography (CT). To evaluate the effect of TV minimization algorithm, we produced a cylindrical phantom including contrast media, water, air inserts. We can acquire maximum 400 projection views per rotation of the x-ray tube and detector. 20, 50, 90, 180 projection data were chosen for evaluating the level of image restoration by TV minimization. The phantom and mouse image reconstructed with FDK algorithm at 400 projection data used as a reference image for comparing with TV minimization and FDK algorithm at few-views. Contrast-to-noise ratio (CNR), Universal quality index (UQI) were used as a image evaluation metric. When projection data are not insufficient, our results show that the image quality of reconstructed with TV minimization is similar to reconstructed image with FDK at 400 view. In the cylindrical phantom study, the CNR of TV image was 5.86, FDK image was 5.65 and FDK-reference was 5.98 at 90-views. The CNR of TV image 0.21 higher than FDK image CNR at 90-views. UQI of TV image was 0.99 and FDK image was 0.81 at 90-views. where, the number of projection is 90, the UQI of TV image 0.18 higher than FDK image at 90-views. In the mouse study UQI of TV image was 0.91, FDK was 0.83 at 90-views. the UQI of TV image 0.08 higher than FDK image at 90-views. In cylindrical phantom image and mouse image study, TV minimization algorithm shows the best performance in artifact reduction and preserving edges at few view data. Therefore, TV minimization can potentially be expected to reduce patient dose in clinics.

RF Detecting Circuit Analysis by Using BLT Equation (BLT 방정식을 이용하 RF 검파 회로 해석)

  • Hwang, Se-Hoon;Park, Yoon-Mi;Jung, Hyun-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1643-1647
    • /
    • 2007
  • Recently, there is a need for research concerning the technologies and precaution methods against electronic bomb assaults. There lays perplex constitution and much coupling phenomenon in this type of system, and thus requires much time and memory in order to translate the system with the existing translation methods. Applying the EMT (Electromagnetic Topology) would prove much more efficient. In this paper, EMT has been applied to the circuit-like micro system, previously employed in micro systems. Also, each section has been interpreted using the BLT (Baum, Liu, Tesche) equation using the EMT, then reconstructed, consequentially interpreting an entire system. In this paper, a simple circuit containing active and passive elements based on a CPW has been interpreted employing the BLT equation, and has been proven by experiment using the circuit simulation, a simulation officially recognized for its accuracy in interpreting small structures. The interpretation results have been presented by an S-parameter, and by comparing the interpretation results attained through the BLT equation and that from common simulation to that from experimentation, that the BLT equation turned out to be the most reliable interpretation method could be found.

Multi-level Analysis of Prefinitely Strainely concrete materials (대변형률이 발생한 콘크리트 재료의 다수준 해석)

  • 최재혁;송하원;김장호;박상순;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.405-410
    • /
    • 2000
  • Multi-level (macro-level, meso-level, and micro-level) mechanism of prefinitely strained concrete materials os studied The multi-level analysis explains the additional quasibrittle concrete material ductility that comes from lateral confinement and their multi-level interaction mechanisms. The so-called "upgraded tube-squash test" is used to achieve 50% axial strain and over 70 degree of deviatoric strain of quasibrittle concrete materials under extremely high pressure without producing visible cracks. In the micro-level analysis, the variations of hydration rte, micropores, and hydrate phased are analyzed. In the meso-level analysis, mesocracks (the initial invisible cracks) at the interfaces between aggregates and cement paste matrices are studied. The high confining effect in the specimen on the meso-level cracks is also studied. In the macro-level analysis, the physical behavior of prefinitely strained concrete materials is studied. The co-relationships of the results from the three distinct levels of analyses based in various prestraining (0%, 15%, 35%, and 50%) are studied. For the extremely deformed or strained concrete problems, multi-level analysis will be used to explain the unclear and unstudied mechanism of concrete materials, The multi-level analysis can provide us with valuable insights that can explain the additional ductility and confining effect in concrete. concrete.

  • PDF

Mechanical Strength and Ultransonic Testing of End Cap Welds in Pressurized Heavy Water Reactor Fuel (중수로핵연료 봉단마개 용접부의 기계적 특성과 초음파 시험)

  • 이정원;최명선;정성훈;고진현
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.60-68
    • /
    • 1991
  • The weld quality of end cap welds in Pressurized Heavy Water Reactor (PHWR) Fuel is extremely important for the fuel performance in the nuclear reactor. The quality of resistance upset welds is currently evaluated mainly by the metallographic examination although it reveals only two weld cross-sections in a circumference welds. This investigation was, firstly, carried out to determine whether the ultrasonic examination would be applied to detect weld defects in the end cap welds and, secondly, to measure the mechanical strength of upset butt welds as a function of phase shift percentage. The major results obtained in this study are as follows: 1. The weld current and amount of upset shrinkage linearly increased with increasing the phase shift percentage. 2. Above the phase shift 55%, the defects in the welds were completely eliminated with increasing the phase of sound weld was over the thickness of cladding tube. 3. The ultrasonic testing well detected such defects in the end cap welds as upset external crack, upset split, corner crack and irregular weld flash comparing with the results of metallography. 4. The micro-fissure in the corner of the end cap welds was reliably detected by ultrasonic testing. 5. The mechanical strength in the welds increased with increasing phase shift percentage but the fracture did't occur in the welds above 55%.

  • PDF

Stability limits of premixed microflames at elevated temperatures (고온에서의 예혼합 초소형 화염의 연소안정한계 연구)

  • Kim, Ki-Baek;Lee, Kyoung-Ho;Hong, Young-Taek;Kwon, Oh-Chae
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.2
    • /
    • pp.158-165
    • /
    • 2006
  • In order to provide the database for designing microcombustors, the combustion characteristics of premixed methane and propane air microflames at normal and elevated temperatures and atmospheric pressure generated on a microtube were studied experimentally and computationally. The stability limits of premixed microflames and the propensity of the microflames near the stability limits were experimentally determined, while the structure of the microflame at the fuel-leanest limit was obtained using a two-dimensional CFD simulation with a reduced kinetic mechanism. For all the microflames, the stability limits were observed only in the fuel-rich region. Results also show substantial extension of stability limits with elevated temperature that is realistic condition for micro fuel processing and significant fuel dilution immediately near the tube exit due to a low Peclet number times Lewis number effect.

The Analysis of Drop-On-Demand Characteristic of Electrostatic Field Induced Inkjet Head System with Carbon Nano Tube (CNT) Ink (정전기장 유도된 잉크젯 프린터 헤드를 이용한 탄소나노튜브 잉크의 Drop-On-Demand 특성 연구)

  • Choi, J.Y.;Kim, Y.J.;Son, S.U.;Kim, Y.M.;Byun, D.Y.;Ko, H.S.;Lee, S.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1445-1449
    • /
    • 2007
  • This paper presents the DOD (Drop-On-Demand) characteristic using the electrostatic field induced inkjet printing system. In order to achieve the DOD characteristic of electrostatic field induced inkjet printing, applied the bias voltage of 1.4 kV and the pulse voltage of $2.0\;kV\;{\sim}\;2.7\;kV$ using high voltage pulse generator. Electrostatic field induced droplet ejection is directly observed using a high-speed camera and for investigated DOD characteristic, CNT ink used. The electrostatic field induced inkjet head system has DOD characteristic using pulse generator which can be applied pulse voltage. The bias voltage has a good condition which form meniscus and has micro dripping mode for small size micro droplet. Also, the droplet size decreases with increasing the applied pulse voltage. This paper shows DOD characteristic at electrostatic field induced inkjet head system, Therefore. electrostatic DOD inkjet head system will be applied industrial area comparing conventional electrostatic inkjet head system.

Growth of graphene:Fundamentals and its application

  • Hwang, Chan-Yong;Yu, Gwon-Jae;Seo, Eun-Gyeong;Kim, Yong-Seong;Kim, Cheol-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.38-38
    • /
    • 2010
  • Ever since the experimental discovery of graphene exfoiliated from the graphite flakes by Geim et at., this area has drawn a lot of attention for its possible application in IT industry. For the growth of graphene, chemical vapor deposition (CVD) has been widely used to fabricate the large area graphene. The lateral size of this graphene can be easily controlled by the size of the metal substrate though the chemical etching to remove this substrate is somewhat troublesome. Another problem which is hard to avoid is the folding at the grain boundary. We will discuss the origin of the folding first and introduce the way to avoid this folding. To solve this problem, we have used the various types of micro-thin metal foils. The precise control of hydro-carbon and the carrier gas results in the formation of the graphene on top of substrate. The thickness of graphene layers can be controlled with the control of gas flow on top of Cu substrate in contrast to the previously reported self-limiting growth $behavior^1$. Uniformity of this graphene layer has been checked by micro-raman spectroscopy and SEM. The size of grain can be enhanced by thermal treatment or use of other metal substrate. The dependence of grain size on the lattice size of the substrate will be discussed. By selecting the shape of substrate, we can grow various types of graphene. We will introduce the micron size graphene tube and its application.

  • PDF

Deep Face Verification Based Convolutional Neural Network

  • Fredj, Hana Ben;Bouguezzi, Safa;Souani, Chokri
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.256-266
    • /
    • 2021
  • The Convolutional Neural Network (CNN) has recently made potential improvements in face verification applications. In fact, different models based on the CNN have attained commendable progress in the classification rate using a massive amount of data in an uncontrolled environment. However, the enormous computation costs and the considerable use of storage causes a noticeable problem during training. To address these challenges, we focus on relevant data trained within the CNN model by integrating a lifting method for a better tradeoff between the data size and the computational efficiency. Our approach is characterized by the advantage that it does not need any additional space to store the features. Indeed, it makes the model much faster during the training and classification steps. The experimental results on Labeled Faces in the Wild and YouTube Faces datasets confirm that the proposed CNN framework improves performance in terms of precision. Obviously, our model deliberately designs to achieve significant speedup and reduce computational complexity in deep CNNs without any accuracy loss. Compared to the existing architectures, the proposed model achieves competitive results in face recognition tasks

Influence of Temperature on the Fretting Wear of Advanced Nuclear Fuel Cladding Tube against Supporting Grid (온도 상승이 개량형 핵연료 피복관과 지지격자 사이의 프레팅 마멸에 미치는 영향)

  • Lee Young-Ze;Park Yong-Chang;Jeong Sung-Hoon;Kim Jin-Seon;Kim Yong-Hwan
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.144-148
    • /
    • 2006
  • The experimental investigation was performed to find the associated changes in characteristics of fretting wear with various water temperatures. The fretting wear tests were carried out using the zirconium alloy tubes and the grids with increasing the water temperature. The tube materials in water of $20^{\circ}C,\;50^{\circ}C\;and\;80^{\circ}C$ were tested with the applied load of 20 N and the relative amplitude of $200{\mu}m$. The worn surfaces were observed by SEM, EDX analysis and 2D surface profiler. As the water temperature increased, the wear volume was decreased, but oxide layer was increased on the worn surface. The abrasive wear mechanism was observed at water temperature of $20^{\circ}C$ and adhesive wear mechanism occurred at water temperature of $50^{\circ}C,\;80^{\circ}C$. As the water temperature increased, surface micro-hardness was decreased, but wear depth and wear width were decreased due to increasing stick phenomenon. Stick regime occurred due to the formation of oxide layer on the worn surface with increasing water temperatures