• Title/Summary/Keyword: Micro-Step

Search Result 485, Processing Time 0.026 seconds

Strength Characteristics of Sedimentary Rock in Daegu-Gyungbuk Area Followed by Saturation and Crack Initiation (대구경북지역 퇴적암의 포화 및 균열 유발에 따른 강도 특성)

  • Park, Sung-Sik;Kim, Seong-Heon;Bae, Do-Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.29-42
    • /
    • 2018
  • Shale and mudstone in Daegu-Gyungbuk area have low strength and resistance to weathering compared to other rocks. Therefore, it is necessary to evaluate their strength depending on the degree of saturation and crack development. In this study, shales and mudstones were collected from several construction sites in Daegu-Gyungbuk area. Their basic material properties such as porosity, SEM, chemical component, and durability were tested. A porosity (absorptivity) of mudstone was 31% (25%), which was 6 (8) times higher than that of shale. Some mudstone was easily disintegrated with water and it consisted of highly-active clay mineral such as smectite type. These rocks were prepared by small cube specimens for unconfined compression test. An unconfined compressive strength of dry rock was compared with saturated one. Microwave oven was operated step by step to stimulate void water within a saturated rock, which resulted into high temperature and micro crack initiation within rocks. A strength of microwaved rocks was compared with operation time and crack initiation. As a result, the average unconfined compressive strength of dry and saturated shale was 62 and 33 MPa, respectively. The strength of mudstone for each condition was 11 and 4 MPa. When a rock became saturated, its strength decreased by 47% and 64% for shale and mudstone at average. In addition to saturation, a rock was in the microwave for 15 secs, its strength decreased into 49% for shale and 52% for mudstone. When a microwave oven operated up to 20 sec, a rock was crushed into several pieces and its temperature was approximately 200 degrees.

MICROTENSILE BOND STRENGTH OF DENTIN BONDING ADHESIVES ON BOVINE TEETH (Bovine teeth에 대한 수 종 상아질 접착제의 미세인장결합강도)

  • Song, Eun-Ju;Kim, Jae-Moon;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.3
    • /
    • pp.420-429
    • /
    • 2007
  • The purpose of this study was to compare the micro ensile bond strength to bovine dentin of several adhesives (SM, Scotch $Bond^{TM}$ Multipurpose; SB, $Adper^{TM}$ Single Bond 2; SE, $Clearfil^{(R)}$ SE Bond; AQ, AQ $Bond^{TM}$; TS, $Clearfil^{(R)}$ tri-S Bond). Except SM and SB, they have a simplified one- or two-step application protocols in compare with the dentin adhesives conventional three-step protocols. For the microtensile bond strength test, the labial surfaces of bovine incisors were used. Following exposure of dentin layer, according to their manufacturer's directions, each dentin adhesives were applied and composite resin blocks were constructed. The teeth were sectioned for specimen and tested microtensile bond strength. Also observed the fracture mode of interface. The obtained results were as follows : 1. The microtensile bond strength values ranged from 51.34 to 24.04 MPa on dentin(in decreasing order, SE, SM, SB, AQ and TS). 2. The highest microtensile bond strength was by SE and SM on bovine dentin, and the lowest by AQ and TS. 3. SM, SB and SE showed cohesive failures and adhesive failure but AQ, TS presented almost adhesive failures. In summary, microtensile bond strengths of single-step adhesives (AQ and TS) on bovine dentin were significantly lower than those of multi-step adhesives (SM, SB and SE) (p<0.05).

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

Comparison of Depth Profiles of CIGS Thin Film by Micro-Raman and XPS (마이크로 라만 및 XPS를 이용한 CIGS 박막의 두께방향 상분석 비교)

  • Beak, Gun Yeol;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.21-24
    • /
    • 2016
  • Chalcopyrite based (CIGS) thin films have considered to be a promising candidates for industrial applications. The growth of quality CIGS thin films without secondary phases is very important for further efficiency improvements. But, the identification of complex secondary phases present in the entire film is crucial issue due to the lack of powerful characterization tools. Even though X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and normal Raman spectroscopy provide the information about the secondary phases, they provide insufficient information because of their resolution problem and complexity in analyzation. Among the above tools, a normal Raman spectroscopy is better for analysis of secondary phases. However, Raman signal provide the information in 300 nm depth of film even the thickness of film is > $1{\mu}m$. For this reason, the information from Raman spectroscopy can't represent the properties of whole film. In this regard, the authors introduce a new way for identification of secondary phases in CIGS film using depth Raman analysis. The CIGS thin films were prepared using DC-sputtering followed by selenization process in 10 min time under $1{\times}10^{-3}torr$ pressure. As-prepared films were polished using a dimple grinder which expanded the $2{\mu}m$ thick films into about 1mm that is more than enough to resolve the depth distribution. Raman analysis indicated that the CIGS film showed different secondary phases such as, $CuIn_3Se_5$, $CuInSe_2$, InSe and CuSe, presented in different depths of the film whereas XPS gave complex information about the phases. Therefore, the present work emphasized that the Raman depth profile tool is more efficient for identification of secondary phases in CIGS thin film.

Numerical Investigation on Aerodynamic Characteristics of Kline-Fogleman Airfoil at Low Reynolds Numbers (Kline-Fogleman Airfoil의 저 레이놀즈수 공력특성 연구)

  • Roh, Nahyeon;Son, Chankyu;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • In this study, aerodynamic characteristics of Kline-Fogleman airfoils are numerically investigatied which has been widely used in remote control aircraft operating at low Reynolds numbers. The comparison of aerodynamic characteristics was conducted between NACA4415 and Kline-Fogleman airfoil based on NACA4415. ANSYS Fluent was employed with the incompressible assumption and $k-{\omega}$ SST turbulence model. It was found that lift coefficient was significantly enhanced in the range of Reynolds number from $3{\times}10^3$ to $3{\times}10^6$. Especially in the region of Reynolds number below $2.4{\times}10^5$, the lift-to-drag-ratio was improved by 26% using the Kline-Folgeman airfoil compared with NACA4415 airfoil.

Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane (하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.

The experimental study of the effect of the hybrid instrumentation method with ProTaper and ProFile on the change of root canal area and distance from the canal to the root surface after canal shaping. (ProTaper와 ProFile을 사용한 Hybrid instrumentation method의 근관 형성 전, 후 근관 단면적과 근관벽에서 치근외면까지 최단거리의 변화에 미치는 영향에 대한 실험적 연구)

  • Kim, Seok-Min;Park, Dong-Sung
    • The Journal of the Korean dental association
    • /
    • v.45 no.6 s.457
    • /
    • pp.362-369
    • /
    • 2007
  • The aim of this study was to investigate the effect of the hybrid instrumentation method with ProTaper and ProFile on the change of root canal area and distance from the canal to the root surface after canal shaping. The mesial canals of twenty extracted mandibular first molars having $10-20^{\circ}\Delta$ curvature were scanned using X-ray microcomputed tomography (XMCT)-scanner before root canals were instrumented. They were divided into four groups (n=10 canals ter group). In Group 1, root canals were instrumented by the step-back technique with stainless steel K-Flexofile after coronal flaring. The remainders were instrumented by the crown-down technique with, ProTaper system (Group 2), ProFile (Group 3) or ProTaper (Group 4). All canals were prepared up to size 25 at the end-point of preparation and scanned again. Pre- and post-operative cross-sectional images of 1, 3, 5, and 7 mm from the apical foramen were compared. For each level, change of cross-sectional canal are and distance to the nearest external root surface was calculated using Adobe Photoshop 6.0 and image software program. In the change of cross-sectional area, Group 4 was less than Group 2 at 3 mm and 5 mm level (p<0.05). In the difference of the distance from the canal to the root surface after canal shaping, Group 4 was least among the other groups at 7 mm level (p<0.05). According to the results, the methods using ProFile or K file only and the hybrid instrumentation technique using ProTaper and ProFile are more appropriate methods of canal preparation than ProTaper system for narrow of curved canals.

  • PDF

Policy Development on Health Administration System in the Era of Local Autonomous Government (지방자치제에 따른 보건의료사업을 위한 보건소 모델개발연구)

  • 남철현
    • Korean Journal of Health Education and Promotion
    • /
    • v.16 no.1
    • /
    • pp.101-126
    • /
    • 1999
  • As the WTO system launches through the agreement of Uruguay Round, the Government has to revise the office regulations or reform the system. Also, Integrating and Coordinating the like affair in health care (i. e., children's home, industry health, school health, health manpower, the administration of health center, the administration on food hygiene, health environmental education, and so on.) which is now scattered into some government departments like the Ministry of Labor, the Ministry of Education, the Ministry of Home Affairs, the Ministry of Agriculture, and the Ministry of Environment, the Government has to prevent unspecialty, inefficiency, inconsistency, and uneconomy. The Government has to review and adopt above suggested the Proposal 1),2),3),4) of the Health Centers on the basis of the local autonomy law and it will help the successive settlement of the local autonomy system in Korea. According to the suggested proposal, the Central Government mainly takes charge of the Macro affairs as hardware, and transfer the Micro affairs as software into the Local Governments to attempt the appropriate functional allocation. To achieve it successfully, the Central Government also has to do the financial support, manpower training and technical support, allocation of health care resources, direction and control, research and development and the health care plan on the macro level. Local Governments which divided into the wide local government and basic local government also have to do their best for health improvement of the community societies like plan of health care program, implementation of health care service program, taking charge of the affairs of health insurance, activation of community residents' participation and security of health care resources etc. To achieve this goal, the Government have to be more active and reformative, the related social and health agencies and educational agencies have to cooperate and support for the goals, and especially, the community residents have to participate actively and voluntarily, When all these conditions promote, local health care administration will be developed, and health level of community residents will be secured. And going one step forward, the country and people will be more healthy

  • PDF

A Design of Power Converter for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환 회로 설계)

  • Won, Chung-Yuen;Jang, Su-Jin;Lee, Won-Chul;Lee, Tae-Won;Kim, Soo-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell is characterized by low voltage and high current. Therefor, for connecting to general load, it needs both a step up converter and an inverter. The proposed system consists of an isolated DC-DC converter to boost the fuel cell voltage to 380[Vdc] and a PWM inverter with LC filter to convert the dc voltage to single phase 220[Vac]. Also, bi-directional DC-DC converter for fuel cell generation system is composed to improve load response characteristic. In this paper, full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

Predictive Model of Micro-Environment in a Naturally Ventilated Greenhouse for a Model-Based Control Approach (자연 환기식 온실의 모델 기반 환기 제어를 위한 미기상 환경 예측 모형)

  • Hong, Se-Woon;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.181-191
    • /
    • 2014
  • Modern commercial greenhouse requires the use of advanced climate control system to improve crop production and to reduce energy consumption. As an alternative to classical sensor-based control method, this paper introduces a model-based control method that consists of two models: the predictive model and the evaluation model. As a first step, this paper presents straightforward models to predict the effect of natural ventilation in a greenhouse according to meteorological factors, such as outdoor air temperature, soil temperature, solar radiation and mean wind speed, and structural factor, opening rate of roof ventilators. A multiple regression analysis was conducted to develop the predictive models on the basis of data obtained by computational fluid dynamics (CFD) simulations. The output of the models are air temperature drops due to ventilation at 9 sub-volumes in the greenhouse and individual volumetric ventilation rate through 6 roof ventilators, and showed a good agreement with the CFD-computed results. The resulting predictive models have an advantage of ensuring quick and reasonable predictions and thereby can be used as a part of a real-time model-based control system for a naturally ventilated greenhouse to predict the implications of alternative control operation.