• 제목/요약/키워드: Micro-Sand

검색결과 137건 처리시간 0.026초

Analysis of Sedimentary Environment and Micro-Landform Changes Afterthe Construction of Artificial Structuresin the Tidal Flat of Anmyeondo Gagyeongju, Western Coast of Korea (인공구조물 건설 후 안면도 가경주 간석지의 퇴적환경 및 미지형변화 분석)

  • JANG, Dong-Ho;Ryu, Ju-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • 제25권1호
    • /
    • pp.31-45
    • /
    • 2018
  • This study investigated the characteristics of sedimentary environment changes across a tidal flat in Gagyeongju of Anmyeondo Island. We performed a spatio-temporal analysis on the grain sizes composition of sediments and micro-landform changes during the winter from 2013 to 2016. The results showed that erosion was a dominant processthroughout the study flat, reducing the surface elevation even by 1 m around the upper sand flat. As a consequence, headlands have formed in the entire region of Gagyeongju village. In addition, erosion quickly progressed along the low-lying subtidal zone and tide way and, in contrast, sedimentation progressed in the mid-elevation tidal flat. We posit that a jetty, which had been constructed as a pier facility on the eastern part of the study area, interfered with the flow of tidal current, thereby enhancing these erosional processes. This is because such interference can block the supply of fine-textured sediments from the nearby Cheonsu Bay and therefore reduce surface elevation. According to the surface sediment analysis, the sediments were categorized into 7 sedimentary facies, and generally displayed a high ratio of silt and clay. The result of time-series analysis (2012-2013) showed that the sediments on the tidal flat became fine-grained, and that sorting became worse. However, the sediments on the subtidal zone, embayment and along inside of the jetty tended to be coarse-grained. In conclusion, the tidal flat microlandform change in the study area was caused by a disruption in the seawater circulation due to the jittery construction within the tidal flat, which had a direct effect on erosional and sedimentary environment processes.

A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method (전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구)

  • Cho, Sung Mo;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • 제34권5호
    • /
    • pp.433-442
    • /
    • 2018
  • In this study, metal properties were compared by preparingthree iron knives from steel ingots produced via traditional iron-making, and ingot which jointed the steel of modern times. Metal microscope and SEM-EDS analysis revealed fine ferrite and pearlite structures of the hypo-eutectoid steel of Fe-C alloys. All samples also exhibited martensite on the blade of the knife. By Vicker's hardness analysis, the hardness of the sand iron knife (K1) was 533.38 HV, sand iron-nickel steel knife (K3) was 514.8 HV, and sand iron-carbon steel knife (K2) was 477.02 HV. The mass reduction due to wear was 0.058% for K1, 0.059% for K3, and 0.144% for K2. EPMA(Electron probe micro-analyzer) analysis of the surface pattern of the specimens confirmed that the patterns were exposed due to differences in the content of C or the chemical composition. Additional research on heat treatment processes is needed to increase the abrasion resistance of blades. Traditional steel ingots could produce high-quality steel if combined with nickel steel.

A Study on Characteristics of Early Age Pore-structure and Carbonation of Ground Granulated Blast Furnace Slag Concrete (고로슬래그미분말 콘크리트의 초기재령특성과 중성화에 관한 연구)

  • 변근주;박성준;하주형;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.107-110
    • /
    • 1999
  • The objective of this study is to obtain characteristics of early age pore-structure and carbonation of concrete using ground granulated blast furnace slag (GGBFS). The durability of GGBFS concrete should be evaluated for wide use of the GGBFS. As for that evaluation, an analysis on early age pore-structure characteristics of GGBFS concrete are very important, Carbonation depths of GGBFS concrete, which are known to be larger than that of OPC, are different according to replacement ratios and fineness of slag. Because sea sand as fine aggregate is much used recently, it is also necessary to analyze characteristics of carbonation of GGBFS concrete. In this study, The micro-pore structure formation characteristics of GGBFS concrete are obtained through the test of GGBFS mortars with different fineness and replacement ratio of GGBFS. The carbonation of GGBFS concrete is also investigated by acclerated carbonation test for early age GGBFS concrete.

  • PDF

Multi-axis Milling for Micro-texturing

  • Kobayashi, Yoshikazu;Shirai, Kenji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.34-38
    • /
    • 2008
  • The surface texture of a product is generally produced by etching or sandblasting. However, these techniques have problems related to repeatability and environmental pollution. Since current milling machines can produce small parts at the micrometer or nanometer level, the resolution of milling exceeds the manufactured dimensions of the surface texture produced by etching or sand-blasting. A method for generating surface texture by milling is proposed and demonstrated. The proposed method was demonstrated by actual milling using a three- or five-axis control machine, and the machined surface texture was measured with an interferometer to allow comparison with the designed shape. The measurement results demonstrate that the proposed method can generate a wide-area surface texture with good machining repeatability.

Micro-Hydrogen Reactor by MEMS Technology for Fuel Cells (MEMS 기술을 이용한 연료전지용 마이크로 수소 발생기)

  • Na, Kyoung-Won;Seo, Young-Gyo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.233-236
    • /
    • 2003
  • 수소 가스발생을 위한 마이크로 수소 발생기 개발에서 MEMS 공정을 이용하여 기판에 반응 유로를 위해 HAR(High Aspect Ratio) 구조물을 형성하고 Ru(ruthenium) 박막을 증착하여 수소 발생량을 측정하였다. Pyrex glass 기판상에 sand blast 방법으로 반응 구조물을 만들었으며, 그 위에 sputter system을 이용하여 Ru 박막을 $5500{\AA}$었다. 수소 발생량은 촉매 박막이 증착된 기판 재질과 기판의 표면 상태 그리고 마이크로 수소 발생기에 두께로 증착하였다. 반응 구조물의 전체 크기가 가로 2.0 cm, 세로 2.0cm의 면적에서 약 12.3 ml/min의 수소가 측정되 형성한 구조물의 형상에 의존하였다. Pyrex glass 기판을 사용하여 HAR로 반응 구조물을 형성한 경우에 단위 면적당 Ru 박반응 막의 반응 표면적이 증가되어 기존에 구조물을 형성하지 않은 평면 기판에 비교하여 약 5.5배 이상의 수소 발생이 증가하였다.

  • PDF

Property Analyses of Deposits and Landform in Tidal Flat using Satellite Image

  • Jo, Myung-Hee;Sugimori, Yasuhiro;Jo, Wha-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 1998년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.110-115
    • /
    • 1998
  • Through the ISODATA method, the micro-landform of Julpo-Bay tidal flat was classified into mudflat, mixedflat, and sandflat using Landsat TM image. Each showed an apparent differences in its topographical characteristics and grain size composition. For example, mudflats are formed with flat faces and tidal channel of dissected gully. Its characteristics of grain size analysis that the grains have less than mean grain size 4 phi. Its sorting is bad (higher than 1 S.D.), and it showed strongly positive skewness. But sandflat is topographically flat without tidal channel. It has developed with ripple marks. According to the grain size analysis of deposits, the soil is coarse size with 90% of sand and its sorting is well(lower than 1 S.D.) Also, it showed strongly negative skewness. Mixed flat is in between mudflat and sandflat in its characteristics.

  • PDF

Applications of piezoelectric sensors in geotechnical engineering

  • Zeng, Xiangwu
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.237-251
    • /
    • 2006
  • Piezoelectric sensors have many applications in geotechnical engineering, especially in characterizing soils through measurement of wave velocities. Since mechanical properties of a material are closely associated with wave velocities, piezoelectric sensors provide a reliable and non-destructive method for the determination of soil properties. This paper presents results of recent research on measuring stiffness of a wide range of soils such as clay, sand, and gravel, characterizing anisotropic properties of soil induced by external loading, measuring stiffness of base and subgrade materials in the pavement, determining soil properties in a centrifuge model during the flight of a centrifuge, and understanding wave propagation in granular materials under micro-gravity environment using this technique.

A Study on the Optimization for the Blasting Process of Glass by Taguchi Method (다구찌 기법을 이용한 유리소재의 블라스팅 가공공정의 최적화에 관한 연구)

  • Yoo, Woo-Sik;Jin, Quan-Qia;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제30권2호
    • /
    • pp.8-14
    • /
    • 2007
  • The powder blasting process has become an important machining technique for the cost effective fabrication of micro devices. This process is similar to sand blasting, and effectively removes hard and brittle materials. A large number of investigations on the abrasive jet machining with such output parameters as material removal rate, penetration and surface roughness have been carried out and reported by various authors. To achieve higher surface roughness, to increase material removal rate and to identify the influence of blasting parameters on the output parameters, we use the taguchi method which is one of the design methods of experiments. We can select process parameters to optimize the blasting process of glass. Experimental results indicate that the taguchi method is useful as a robust design methodology for the powder blasting process.

Development of Pollutant Removal Model in the Artificial Wetland (인공습지의 수질개선 효과 분석모델 개발)

  • Choi, Ji-Yong
    • Journal of Wetlands Research
    • /
    • 제4권1호
    • /
    • pp.51-61
    • /
    • 2002
  • The wetland is a biologically integrated system consisting of water, soil, bacteria, plants, and animals. The wetland helps sustain the ecosystem, control the micro-climate and flood, maintain the ground water level, and provide fishing grounds. From the environmental standpoint, the wetland plays a vital role in reducing water pollution by filtering out sand and other polluted matters, producing oxygen, absorbing chemicals and nutrients. For these reasons, interest in restoring the wetlands has been steadily increasing. Artificial wetland, which is also referred to as created wetland or constructed wetland, is an alternative to natural wetland. Like natural wetland, artificial wetland is environmentally friendly and can effectively lower pollutant levels. The Korea government is actively reviewing the construction of artificial wetlands in mining and water supply areas to decrease nonpoint pollutant sources. This paper attempts to develop a pollutant removal model for the water quality improvement function of artificial wetlands. Artificial wetland can improve the quality of the water; however, depending on the type of water inflow, vegetation and hydrology, its effect can be different.

  • PDF

Durability of high performance sandcretes (HPS) in aggressive environment

  • Benamara, Dalila;Tebbal, Nadia;Rahmouni, Zine El Abidine
    • Advances in concrete construction
    • /
    • 제8권3호
    • /
    • pp.199-206
    • /
    • 2019
  • High performance sandcretes (HPS) are new concretes characterized by particles having a diameter less than 5 mm, as well as very high mechanical strength and durability. This work consists in finding solutions to make sandcretes with good physico-mechanical and durability properties for this new generation of micro-concrete. However, upgrading ordinary sandcrete into high performance sandcrete (HPS) requires a thorough study of formulation parameters (equivalent water/binder ratio, type of cement and its dosage, kind and amount of super plasticizer, and gravel/sand ratio). This research study concerns the formulation, characterization and durability, in a sulphate environment, of a high performance sandcrete (HPS), made from local materials. The obtained results show that the rheological properties of fresh concrete and mechanical strength differ with the mineralogy, density and grain size distribution of sands and silica fume used.