• Title/Summary/Keyword: Micro-Injection

Search Result 451, Processing Time 0.02 seconds

The Effect of CO2 Fixation for Microalgae based on CO2 Concentration and Flow Rate (이산화탄소 농도 및 유속에 따른 하천 내 미세조류의 이산화탄소 고정 효과)

  • Park, Hyomin;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.363-369
    • /
    • 2018
  • One of the recent environmental problems is climate change due to the increase of atmospheric $CO_2$, which causes ecological changes and various environmental problems. Therefore, various studies are being carried out to reduce $CO_2$ in the world in order to solve various environmental problems caused by increase of $CO_2$. The $CO_2$ reduction using microalgae is an environmentally friendly method by using photosynthesis reaction of microalgae. However, most studies using single species. There is no study on the $CO_2$ fixing efficiency of microalgae in natural rivers. Therefore, this study was to identify the microalgae in the Sum river and to analyze the growth characteristics of microalgae in the river to obtain optimal culture conditions. And the changes of biomass and chlorophyll-a of microalgae were analyzed according to $CO_2$ concentration and injection rate. The purpose of this study was to investigate the fixing efficiency of carbon dioxide in microalgae in natural rivers. Six kinds of dominant species were observed as a result of the identification of microalgae in Sum river(Ankistrodesmus falcatus, Scenedesmus intermedius, Selenodictyum sp., Xanthidium apiculatum var. laeve, Cosmarium pseudoquinarium, Dictyosphaerium pulchellum). All of these species were green algae. Biomass and chlorophyll-a increased with the increase of $CO_2$ concentration and biomass and chlorophyll-a increased faster flow rate at the same $CO_2$ concentration. Also, the quantity of $CO_2$ fixation on the microalgae tended to be higher when the flow rate of injected gas was faster. This study can be referred as being significant in the micro-algae in river. In addition, the optimal conditions for $CO_2$ fixation of microalgae in rivers and the quantification of the quantity of $CO_2$ fixation from microalgae in rivers can be used as basic data for future policy of $CO_2$ reduction.