• Title/Summary/Keyword: Micro-Fiber

Search Result 537, Processing Time 0.027 seconds

Organic solvent absorption characteristics of split-type micro fiber fabrics (분할형 극세사 직물의 흡용제특성)

  • 이광주;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.313-314
    • /
    • 2003
  • 분할형 극세사 직물은 서로 상용성을 가지지 않는 nylon/polyester의 용융고분자물을 복합방사법에 의하여 filament 형태로 방사한 후 이를 제직, 편성의 방법으로 포를 제조하고 알칼리 용액에 처리함으로써 생산되어 진다. 따라서 극세사 직물은 일반적으로 소수성의 합성섬유로 이루어졌음에도 불구하고 알칼리 가수분해에 의하여 분할된 섬유 사이의 수많은 모세관에 의하여 높은 흡수성과 수분전이능력을 갖게 된다. 이러한 이유로 극세사 직물은 일반적인 와이퍼의 용도뿐만이 아니라 food service, medicine, 반도체를 제조하는 clean room등으로 그 응용범위를 넓혀 가고 있다. (중략)

  • PDF

Synthesis and Application of Acrylated Disperse Dyes (Acryl기를 도입한 분산염료의 합성과 염색성)

  • 박종호;한지연;정재윤
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.411-412
    • /
    • 2003
  • 1990년 초 일본의 Shingosen이 출현 이후, 합성 섬유가 갖는 일련의 장점을 유지하면서 천연섬유의 특성을 모방한 폴리에스테르 극세섬유의 등장으로 고급화 및 차별화 된 폴리에스테르 섬유의 상품 추구가 가능하게 되었다. 근래에 와서 통상적인 방법으로 얻어지는 극세사(Micro fiber)는 약 1d이며, 현재에는 보통사와는 전혀 다른 고도의 유연성$\boxUl$ 촉감, 외관을 가지는 0.3d이하의 공업적 방사도 가능하게 되었다. (중략)

  • PDF

Synthesis and Application of Disperse Dyes for Polyester and Nylon Microfiber (폴리에스테르 및 나일론 극세섬유용 분산염료의 합성과 응용)

  • 이창주;이범훈;정재윤
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.135-138
    • /
    • 2002
  • 1990년 초 일본의 Shingosen이 출현하면서 범용화하고 있는 폴리에스테르 섬유가 고부가가치 상품으로 변신하게 되는 계기를 맞게 되었다. 합성 섬유가 갖는 일련의 장점을 유지하면서 천연섬유의 특성을 모방한 폴리에스테르 극세섬유의 등장으로 고급화 및 차별화 된 폴리에스테르 섬유의 상품 추구가 가능하게 되었다. 근래에 와서 통상적인 방법으로 얻어지는 극세사(Micro Fiber)는 약 1d이며, 현재에는 0.3d의 공업적 방사도 가능하게 되었다. (중략)

  • PDF

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Self-Sensing of Single Carbon Fiber/Carbon Nanotube-Epoxy Composites Using Electro-Micromechanical Techniques and Acoustic Emission (전기적-미세역학시험법과 음향방출을 이용한 단일 탄소섬유/탄소나노튜브-에폭시 나노복합재료의 자체-감지능)

  • Park, Joung-Man;Jang, Jung-Hoon;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Jong-Kyu;Lee, Woo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.411-422
    • /
    • 2010
  • Self-sensing on micro-failure, dispersion degree and relating properties, of carbon nanotube(CNT)/epoxy composites, were investigated using wettability, electro-micromechanical technique with acoustic emission(AE). Specimens were prepared from neat epoxy as well as composites with untreated and acid-treated CNT. Degree of dispersion was evaluated comparatively by measuring volumetric electrical resistivity and its standard deviation. Apparent modulus containing the stress transfer was higher for acid-treated CNT composite than for the untreated case. Applied cyclic loading responded well for a single carbon fiber/CNT-epoxy composite by the change in contact resistivity. The interfacial shear strength between a single carbon fiber and CNT-epoxy, determined in a fiber pullout test, was lower than that between a single carbon fiber and neat epoxy. Regarding on micro-damage sensing using electrical resistivity measurement with AE, the stepwise increment in electrical resistivity was observed for a single carbon fiber/CNT -epoxy composite. On the other hand, electrical resistivity increased infinitely right after the first carbon fiber breaks for a single carbon fiber/neat epoxy composite. The occurrence of AE events of added CNT composites was much higher than the neat epoxy case, due to micro failure at the interfaces by added CNTs.

Phase Segmentation of PVA Fiber-Reinforced Cementitious Composites Using U-net Deep Learning Approach (U-net 딥러닝 기법을 활용한 PVA 섬유 보강 시멘트 복합체의 섬유 분리)

  • Jeewoo Suh;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.323-330
    • /
    • 2023
  • The development of an analysis model that reflects the microstructure characteristics of polyvinyl alcohol (PVA) fiber-reinforced cementitious composites, which have a highly complex microstructure, enables synergy between efficient material design and real experiments. PVA fiber orientations are an important factor that influences the mechanical behavior of PVA fiber-reinforced cementitious composites. Owing to the difficulty in distinguishing the gray level value obtained from micro-CT images of PVA fibers from adjacent phases, fiber segmentation is time-consuming work. In this study, a micro-CT test with a voxel size of 0.65 ㎛3 was performed to investigate the three-dimensional distribution of fibers. To segment the fibers and generate training data, histogram, morphology, and gradient-based phase-segmentation methods were used. A U-net model was proposed to segment fibers from micro-CT images of PVA fiber-reinforced cementitious composites. Data augmentation was applied to increase the accuracy of the training, using a total of 1024 images as training data. The performance of the model was evaluated using accuracy, precision, recall, and F1 score. The trained model achieved a high fiber segmentation performance and efficiency, and the approach can be applied to other specimens as well.

Flexural and Workable Properties of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유 보강 콘크리트의 휨 및 유동 특성)

  • Park Choon-Keun;Noh Myung-Hyun;Park Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.543-550
    • /
    • 2005
  • In the present work, modulus of rupture (MOR), flexural toughness properties $(I_{30}\;and\;W_{2.0})$ and workability (slump) of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber), and replaced with a fine mineral admixture such as silica fume (SF) are characterized through the analysis of variance (ANOVA). Data of MOR, $I_{30}(or W_{2.0})$ and slump are used as the characteristic values to estimate flexural performance and workable property of HPHFRC. Specially, an experimental design was Planned according to the fractional orthogoanl nay method to reduce experimental number of times. The experimental results show that steel fiber is a considerable significant factor in MOR and I30 $(W_{2.0})$. Based on the significance of experimental factors about each characteristic factors, the following evaluation can be used: Experiment factors which reduce slump most remarkably are carbon fiber, steel fiber, silica fume order.; Those that improve MOR most significantly are silica fume $({\fallingdotseq}\;carbon\;fiber)$, steel fiber order; Those that increase flexural toughness most distinctly are silica fume, carbon fiber, steel fiber order. It is obtained that the combination of steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$ is the experimental condition that improve MOR and flexural toughness excellently with workability ensured within the experiment.

Fabrication of the Integrated Triplexer Using Micro Block Stacking Method (Micro-block Stacking 방법으로 제작한 집적형 Triplexer 제작 및 특성 측정)

  • Yoon, Hyun-Jae;Kim, Jin-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.217-221
    • /
    • 2012
  • In this paper, we have fabricated by means of the "Micro-Block Stacking (MBS)" method the 8 pin mini DIL integrated Triplexer, which can transmit CATV and voice/data at the same time in a single fiber. Our MBS technique is a novel scheme of compact optical module packaging which secures precision positioning of the components on the optical beam path by prefixed stacks of ceramic blocks. The subassembly in which a laser diode, two receiver photodiodes, two WDM filters, and four micro lenses are integrated is only $5.40mm{\times}2.15mm{\times}1.05mm$ in size. As the Triplexer is aligned to the single mode fiber, the transmitter power of -14.5 dBm and the receiver sensitivities of 0.83 A/W, 0.73 A/W for 1550 nm, 1490 nm, respectively are obtained.