• 제목/요약/키워드: Micro-Abrasive Jet Machining

검색결과 27건 처리시간 0.02초

파우더 블라스팅을 이용한 유리 가공시 실험계획법에 의한 가공면 분석 (Predictive modeling of surface roughness and material removal In powder blasting of glass by design of experiments)

  • 김권흡;김정근;한진용;성은제;박동삼;유우식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.681-684
    • /
    • 2005
  • The old technique of sandblasting which has been used for paint or scale removing, deburring, and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than 100um. A large number of Investigations on the abrasive jet machining with output parameters as material removal rate, penetrate and surface finish have been carried out and reported by various authors. In this paper, we investigated the effect of surface characteristics and surface shape of the abrasive jet machined glass surface under different blasting parameter. and finally we established a model for abrasive flow machining process, and compared with experimental results.

  • PDF

다구찌 기법을 이용한 유리소재의 블라스팅 가공공정의 최적화에 관한 연구 (A Study on the Optimization for the Blasting Process of Glass by Taguchi Method)

  • 유우식;김권흡;정영배
    • 산업경영시스템학회지
    • /
    • 제30권2호
    • /
    • pp.8-14
    • /
    • 2007
  • The powder blasting process has become an important machining technique for the cost effective fabrication of micro devices. This process is similar to sand blasting, and effectively removes hard and brittle materials. A large number of investigations on the abrasive jet machining with such output parameters as material removal rate, penetration and surface roughness have been carried out and reported by various authors. To achieve higher surface roughness, to increase material removal rate and to identify the influence of blasting parameters on the output parameters, we use the taguchi method which is one of the design methods of experiments. We can select process parameters to optimize the blasting process of glass. Experimental results indicate that the taguchi method is useful as a robust design methodology for the powder blasting process.

실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구 (A study on the Grindability of Fine Ceramics by Experimental Method)

  • 김성겸
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구 (Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material)

  • 박강수;박연경;이정한;이채문;고정상;신보성
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).