• Title/Summary/Keyword: Micro thermophotovoltaic system

Search Result 2, Processing Time 0.018 seconds

Combustion Characteristics in a Heat-recirculating Microemitter for a Micro Thermophotovoltaic System (초소형 열광전변환 장치용 열재순환 초소형 이미터 내 연소특성에 관한 연구)

  • Lee, Kyoung-Ho;Kwon, Oh-Chae
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2360-2365
    • /
    • 2007
  • A new microemitter (microcombustor) configuration for a micro thermophotovoltaic system in which thermal energy is directly converted into electrical energy through thermal radiation was investigated experimentally and computationally. The microemitter as a thermal heat source was designed for a few watt power-generating micro thermophotovoltaic system. In order to satisfy the primary requirements for designing the microemitter, i.e., stable burning in the small confinement and maximum heat transfer through the emitting walls but uniform distribution of temperature along the walls, the present microemitter is cylindrical with an annular-type shield for heat recirculation to apply for the excessive enthalpy concept. Results show that the heat recirculation substantially improves the performance of the microemitter: the observed and predicted thermal radiation from the microemitter walls indicated that heat generated in the microemitter is uniformly emitted.

  • PDF

Performance Analysis of Photonic Crystal Enhanced Micro-Combustor Thermophotovoltaic System for Drone Application (광결정 표면을 이용한 드론용 마이크로 연소기 열광전 에너지변환시스템의 성능해석)

  • Lee, Junghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.309-316
    • /
    • 2021
  • In this paper, the electrical power output of the micro-combustor thermophotovoltiac(TPV) system was analyzed. The system consists of a micro-combustor, photonic crystals(PhCs), and photovoltaic cells(PV cells). The system has a micro-combustor that can achieve over 1,000 K surface temperature by consuming 2.5 g/h hydrogen fuel. Also, this system incorporates current state-of-the-art PhCs surfaces(2D Ta PhCs and Tandem Filter) to increase electrical power output. In addition, InGaAsSb PV cell, which bandgap is 0.55 eV, was applied to convert a wide range of radiative energy. The performance analysis shows that a single micro-combustor TPV system can produce 0.4 W ~ 27.7 W electrical power with the temperature change of emitter(900 K ~ 1,500 K) and PV cell(250 K ~ 400 K).