• Title/Summary/Keyword: Micro strength

Search Result 1,201, Processing Time 0.024 seconds

Investigation towards strength properties of ternary blended concrete

  • Imam, Ashhad;Moeeni, Shahzad Asghar;Srivastava, Vikas;Sharma, Keshav K
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.207-217
    • /
    • 2021
  • This study relates to a production of Quaternary Cement Concrete (QCC) prepared by using Micro Silica (MS), Marble Dust (MD) and Rice Husk Ash (RHA), followed by an investigation towards fresh and hardened properties of blended concrete. A total of 39 mixes were cast by incorporating different percentages of MS (6%, 7% and 8%), MD (5%, 10% and 15%) and RHA (5%, 10%, 15% and 20%) as partial replacement of Ordinary Portland Cement. The workability of fresh concrete was maintained in the range of 100±25 mm by adding 0.7% of Super Plasticizer in the mix. Optimum mechanical strength was observed at combination of 8% MS+5% MD+10% RHA. Marble dust replacement from 10 to 15% and Rice husk ash replacements from 15 to 20% depicted a substantial reduction in compressive strength at all ages. Durability parameter with respect to water absorption at 28 days shows an increasing trend as the percentage of blending increases.

A Basic Study on Micro-Electric Potential accompanied with Specimen Failure during Uniaxial Compressive Test (일축 압축에 의한 시료 파괴 시 수반되는 미소 전위에 대한 기초 연구)

  • Kim, Jong-Wook;Park, Sam-Gyu;Song, Young-Soo;Sung, Nak-Hun;Kim, Jung-Ho;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2007
  • As a part of basic studies on monitoring of landslides and slope stability using SP measurements, micro-electric potentials of rock samples were measured accompanied with the rock failure by a uniaxial loading test were measured. The measurement system consists of a 8 channel A/D converter with 24 bit resolution, uniaxial loading tester, strain gages and 4 sets of electrode attached to a rock sample. Rock samples of granite, limestone, and sandstone were tested. Also, mortar samples were tested in order to monitor electric-potentials of a uniform sample. Micro-electric potentials were detected in all saturated samples and the strength of them increased as the loading force increased. Sandstone samples showed the largest strength of micro-electric potential and it followed limestone and granite samples, which indicates a positive relationship with porosity of rocks. The mechanism generating these micro-electric potential can be explained in terms of electro-kinetics. In case of dry samples, micro-electric potential could be observed only in sandstone samples, where piezoelectric effect played main role due to high contents of quartz in sandstone samples. We found that biggest micro-electric potentials were observed at the electrodes near the crack surface of rock samples. This is very encouraging result that SP monitoring can be applied to predicting landsliding or to estimate collapsing position combining with monitoring of acoustic emissions.

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Therapeutic Advantages of Treatment of High-Dose Curcumin in the Ovariectomized Rat

  • Cho, Dae-Chul;Jung, Hyun-Sik;Kim, Kyoung-Tae;Jeon, Younghoon;Sung, Joo-Kyung;Hwang, Jeong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.461-466
    • /
    • 2013
  • Objective : Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats. Methods : Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. Results : High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015). Conclusion : The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.

Mechanical Strength Evaluation of A53B Carbon Steel Subjected to High Temperature Hydrogen Attack

  • Kim, Maan-Won;Lee, Joon-Won;Yoon, Kee-Bong;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • In this study mechanical strength of A53B carbon steel was analyzed using several types of test specimens directly machined from oil recycling pipe experienced a failure due to hydrogen attack in chemical plants. High temperature hydrogen attack (HTHA) is the damage process of grain boundary facets due to a chemical reaction of carbides with hydrogen, thus forming cavities with high pressure methane gas. Driven by the methane gas pressure, the cavities grow on grain boundaries forming intergranular micro cracks. Microscopic optical examination, tensile test, Charpy impact test, hardness measurement, and small punch (SP) test were performed. Carbon content of the hydrogen attacked specimens was dramatically reduced compared with that of standard specification of A53B. Traces of decarburization and micro-cracks were observed by optical and scanning electron microscopy. Charpy impact energy in hydrogen attacked part of the pipe exhibited very low values due to the decarburization and micro fissure formation by HTHA, on the other hand, data tested from the sound part of the pipe showed high and scattered impact energy. Maximum reaction forces and ductility in SP test were decreased at hydrogen attacked part of the pipe compared with sound part of the pipe. Finite element analyses for SP test were performed to estimate tensile properties for untested part of the pipe in tensile test. And fracture toughness was calculated using an equivalent strain concept with SP test and finite element analysis results.

Nd-YAG LASER MICRO WELDING OF STAINLESS WIRE

  • Takatugu, Masaya;Seki, Masanori;Kunimas, Takeshi;Uenishi, Keisuke;Kobayashi, Kojiro F.;Ikeda, Takeshi;Tuboi, Akihiko
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.187-192
    • /
    • 2002
  • Applicability of laser micro welding process to the fabrication of medical devices was investigated. Austenitic stainless steel wire (SUS304) was spot melted and crosswise welded, which is one of the most possible welding process for the fabrication of medical devices, by using a Nd-YAG laser. Effects of welding parameters on the microstructure, tensile strength and corrosion resistance were discussed. In the spot melting, melted metal width decreased with decreasing the input energy and pulse duration. Controlling the laser wave to reduce laser noise which occurred in the early stage of laser irradiation made reasonable welding condition wider in the welding condition of small pulse duration such as 2ms. The microstructure of the melted metal was a cellular dendrite structure and the cell size of the weld metal was about 0.5~3.5 ${\mu}{\textrm}{m}$. Tensile strength increased with the decrease of the melted metal width and reached to a maximum about 660MPa, which is comparable with that for the tempered base metal. Even by immersion test at 318K for 3600ks in quasi biological environment (0.9% NaCl), microstructure of the melted metal and tensile strength hardly changed from those for as melted material. In the crosswise welding, joints morphologies were classified into 3 types by the melting state of lower wire. Fracture load increased with input energy and melted area of lower wire, and reached to a maximum about 80N. However, when input energy was further increased and lower wire was fully melted, fracture load decreased due to the burn out of weld metal.

  • PDF

The Influence of Water Storage on Mechanical Properties of Adhesive Resin (수중 보관이 접착용 레진의 물리적 성질에 미치는 영향)

  • Kim, Won-Chan;Lee, Kwang-won;Lee, Jeong;Yu, Mi-Kyoung;Kim, Jeong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2006
  • Objective To evaluate the influence of water storage on the mechanical properties of dental adhesives over 1 and 3 months. Materials and Methods Adhesive resin sheets were prepared by pouring either All-bond 2(AB), Clearfil SE Bond(SE) into a mold measuring $15{\times}15{\times}0.9mm$. After solvent in primer evaporation, the adhesives were light-cured and removed from the mold and divided in two pieces, trimmed to hourglass shape that were used to determine the micro-tensile strength(MTS). Another hourglass shaped metal mold measuring $2.0{\times}1.5mm$ in cross-section area was made to determine the Young's modulus(E). Adhesive specimens for Young's modulus(E) were prepared in the same method. Specimens were stored at $37^{\circ}C$ in distilled water and tested after 1 and 3 months. The data were analyzed by one-way ANOVA and Tukey's test. Results Water storage significantly decreased the micro-tensile strength(MTS) of AB and SE specimens after 1 and 3 months(P<0.05). The Young's modulus(E) were also decreased after water storage for 1 and 3 months, but statistically not significant in each group of AB and SE group respectively. Conclusions Long-term exposure of adhesive resin to water can cause reduction of mechanical properties. It may compromise resin/dentin bonds and affect longevity of restorations.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Durability of Concrete Using Insulation Performance Improvement Materials (단열성능 향상 재료를 사용한 콘크리트의 내구성에 관한 연구)

  • Park, Young-Shin;Kim, Jung-Ho;Kim, Se-Hwan;Kim, Sang-Heon;Jeon, Hyun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, we tested to develop and apply structural insulation performance improvement concrete to field, which had compressive strength in 24 MPa and thermal conductivity twice as much as normal concrete. After experiment about slump and air contents, combination product of Plain and calcined diatomite powder showed reduction of slump and air contents and combination product with micro foam cell admixture, we cannot find result of slump and air contents reduction. Unit weight of combination product with insulation performance improvement materials decreased more than that of Plain. In the test of compressive strength, compressive strength of insulation performance improvement concrete decreased more than that of Plain but was content with 24 MPa. thermal conductivity of insulation performance improvement concrete tended to decrease. Freezing and thawing resistance of insulation performance improvement concrete was similar to that of Plain. In carbonation resistance test, combination product with calcined diatomite powder showed the result which was similar to that of Plain. In carbonation resistance test, combination product with micro foam cell admixture showed a increase compared to that of Plain and length variation of combination product generally increased.