• Title/Summary/Keyword: Micro positioning system

Search Result 99, Processing Time 0.027 seconds

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

Changes in Measuring Methods of Walking Behavior and the Potentials of Mobile Big Data in Recent Walkability Researches (보행행태조사방법론의 변화와 모바일 빅데이터의 가능성 진단 연구 - 보행환경 분석연구 최근 사례를 중심으로 -)

  • Kim, Hyunju;Park, So-Hyun;Lee, Sunjae
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to evaluate the walking behavior analysis methodology used in the previous studies, paying attention to the demand for empirical data collecting for urban and neighborhood planning. The preceding researches are divided into (1)Recording, (2) Surveys, (3)Statistical data, (4)Global positioning system (GPS) devices, and (5)Mobile Big Data analysis. Next, we analyze the precedent research and identify the changes of the walkability research. (1)being required empirical data on the actual walking and moving patterns of people, (2)beginning to be measured micro-walking behaviors such as actual route, walking facilities, detour, walking area. In addition, according to the trend of research, it is analyzed that the use of GPS device and the mobile big data are newly emerged. Finally, we analyze pedestrian data based on mobile big data in terms of 'application' and distinguishing it from existing survey methodology. We present the possibility of mobile big data. (1)Improvement of human, temporal and spatial constraints of data collection, (2)Improvement of inaccuracy of collected data, (3)Improvement of subjective intervention in data collection and preprocessing, (4)Expandability of walking environment research.

Study on MEMS based IMU & GPS Performance in Urban Area for Light-Weighted Mobile Mapping Systems (경량 모바일매핑시스템을 위한 도심지 내 MEMS 기반 IMU/GPS 통합센서(MTi-G) 특성 연구)

  • Woo, Hee-Sook;Kwon, Kwang-Seok;Kim, Byung-Guk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • With the development of MEMS, small and low-priced sensors integrating IMU and GPS have produced and exploited for diverse field. In this research, we have judged that MEMS-based IMU/GPS sensor is suitable for light-weighted mobile mapping system and carried out experiments to analyze the characteristics of MTi-G, which was developed from XSens company. From a sensor which fixed to dashboard, coordinates results with no post-processing were achieved for test area. On the whole, the results show satisfactory performances but some errors also were discovered from parts of the road due to sensor properties, XKF characteristics and GPS reception environment. We could confirm the potential of light-weighted mobile mapping system. Experiments considering various GPS reception environments and road condition and more detailed level of accuracy analysis will be performed for further research.

Micro-CT System for Small Animal Imaging (소동물영상을 위한 마이크로 컴퓨터단층촬영장치)

  • Nam, Ki-Yong;Kim, Kyong-Woo;Kim, Jae-Hee;Son, Hyun-Hwa;Ryu, Jeong-Hyun;Kang, Seoung-Hoon;Chon, Kwon-Su;Park, Seong-Hoon;Yoon, Kwon-Ha
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.102-112
    • /
    • 2008
  • We developed a high-resolution micro-CT system based on rotational gantry and flat-panel detector for live mouse imaging. This system is composed primarily of an x-ray source with micro-focal spot size, a CMOS (complementary metal oxide semiconductor) flat panel detector coupled with Csl (TI) (thallium-doped cesium iodide) scintillator, a linearly moving couch, a rotational gantry coupled with positioning encoder, and a parallel processing system for image data. This system was designed to be of the gantry-rotation type which has several advantages in obtaining CT images of live mice, namely, the relative ease of minimizing the motion artifact of the mice and the capability of administering respiratory anesthesia during scanning. We evaluated the spatial resolution, image contrast, and uniformity of the CT system using CT phantoms. As the results, the spatial resolution of the system was approximately the 11.3 cycles/mm at 10% of the MTF curve, and the radiation dose to the mice was 81.5 mGy. The minimal resolving contrast was found to be less than 46 CT numbers on low-contrast phantom imaging test. We found that the image non-uniformity was approximately 70 CT numbers at a voxel size of ${\sim}55{\times}55{\times}X100\;{\mu}^3$. We present the image test results of the skull and lung, and body of the live mice.

  • PDF

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Development of Geometric Calibration Method for Triple Head Pinhole SPECT System (삼중헤드 SPECT에서 기하학적 보정 기법의 개발)

  • Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Won-Woo;Park, So-Yeon;Son, Ji-Yeon;Kim, Yu-Kyeong;Kim, Sang-Eun;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Purpose: Micro-pinhole SPECT system with conventional multiple-head gamma cameras has the advantage of high magnification factor for imaging of rodents. However, several geometric factors should be calibrated to obtain the SPECT image with good image quality. We developed a simplified geometric calibration method for rotating triple-head pinhole SPECT system and assessed the effects of the calibration using several phantom and rodent imaging studies. Materials and Methods: Trionix Triad XLT9 triple-head SPECT scanner with 1.0 mm pinhole apertures were used for the experiments. Approximately centered point source was scanned to track the angle-dependent positioning errors. The centroid of point source was determined by the center of mass calculation. Axially departed two point sources were scanned to calibrate radius of rotation from pinhole to center of rotation. To verify the improvements by the geometric calibration, we compared the spatial resolution of the reconstructed image of Tc-99m point source with and without the calibration. SPECT image of micro performance phantom with hot rod inserts was acquired and several animal imaging studies were performed. Results: Exact sphere shape of the point source was obtained by applying the calibration and axial resolution was improved. Lesion detectibility and image quality was also much improved by the calibration in the phantom and animal studies. Conclusion: Serious degradation of micro-pinhole SPECT images due to the geometric errors could be corrected using a simplified calibration method using only one or two point sources.

Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment (고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계)

  • Jeong, Koo-yong;Park, Dae-young;Kim, Seong-min;Lee, Jong-hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • In this paper, a GPS/MEMS IMU integrated navigation receiver module capable of operating in a high dynamic environment is designed and fabricated, and the results is confirmed. The designed module is composed of RF receiver unit, inertial measurement unit, signal processing unit, correlator, and navigation S/W. The RF receiver performs the functions of low noise amplification, frequency conversion, filtering, and automatic gain control. The inertial measurement unit collects measurement data from a MEMS class IMU applied with a 3-axis gyroscope, accelerometer, and geomagnetic sensor. In addition, it provides an interface to transmit to the navigation S/W. The signal processing unit and the correlator is implemented with FPGA logic to perform filtering and corrrelation value calculation. Navigation S/W is implemented using the internal CPU of the FPGA. The size of the manufactured module is 95.0×85.0×.12.5mm, the weight is 110g, and the navigation accuracy performance within the specification is confirmed in an environment of 1200m/s and acceleration of 10g.

Probe Vehicle Data Collecting Intervals for Completeness of Link-based Space Mean Speed Estimation (링크 공간평균속도 신뢰성 확보를 위한 프로브 차량 데이터 적정 수집주기 산정 연구)

  • Oh, Chang-hwan;Won, Minsu;Song, Tai-jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.70-81
    • /
    • 2020
  • Point-by-point data, which is abundantly collected by vehicles with embedded GPS (Global Positioning System), generate useful information. These data facilitate decisions by transportation jurisdictions, and private vendors can monitor and investigate micro-scale driver behavior, traffic flow, and roadway movements. The information is applied to develop app-based route guidance and business models. Of these, speed data play a vital role in developing key parameters and applying agent-based information and services. Nevertheless, link speed values require different levels of physical storage and fidelity, depending on both collecting and reporting intervals. Given these circumstances, this study aimed to establish an appropriate collection interval to efficiently utilize Space Mean Speed information by vehicles with embedded GPS. We conducted a comparison of Probe-vehicle data and Image-based vehicle data to understand PE(Percentage Error). According to the study results, the PE of the Probe-vehicle data showed a 95% confidence level within an 8-second interval, which was chosen as the appropriate collection interval for Probe-vehicle data. It is our hope that the developed guidelines facilitate C-ITS, and autonomous driving service providers will use more reliable Space Mean Speed data to develop better related C-ITS and autonomous driving services.

Dose Comparison of Treatment Plans Using Different Ir-192 Sources and Treatment Planning Systems for Intracavitary HDR Brachytherapy (고선량률 강내 근접치료에 사용되는 Ir-192 선원과 치료계획 시스템간의 계산선량 비교)

  • Park, Dong-Wook;Kim, Young-Seok;Park, Sung-Ho;Choi, Eun-Kyung;Kim, Jong-Hoon;Lee, Sang-Wook;Song, Si-Yeol;Ahn, Seung-Do;Noh, Young-Joo
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • For HDR intracavitary brachytherapy with ovoids and a tandem, we compared the dose discrepancy of treatment plans using two different Ir-192 sources (microSelectron, Varian) and generated on two different treatment planning systems (PLATO, BrachyVision). The treatment plans of ten patient treated from Oct. 2007 to Jan. 2008 were selected for these comparisons. For the comparison of dose calculation using different sources, the average discrepancies were $-0.91{\pm}0.09%$, $-0.27{\pm}0.07%$, $0.22{\pm}0.39%$, and $0.88{\pm}0.37%$ in total treatment time and at B-point and ICRU bladder and rectum reference point, respectively. Comparing the two systems, the average dose discrepancies between treatment planning programs were $-0.22{\pm}0.42%$, $-0.25{\pm}0.29%$, $-0.23{\pm}0.63%$, and $-0.17{\pm}0.76%$, and the average dose discrepancies between positioning methods (PLATO with film and BrachyVision with digitial image) were $-0.61{\pm}0.59%$, $-0.77{\pm}0.45%$, $-0.72{\pm}1.70%$, and $0.35{\pm}2.82%$ at A-point, B-point, and ICRU bladder and rectum reference points, respectively. The rectal dose discrepancies between two systems were reached 5.87%. The difference in the dwell position expected by each TPS are mainly affected by the differences in the positioning method in TPSs and have an effect on dose calculations of rectal and bladder located in AP direction.

  • PDF