• Title/Summary/Keyword: Micro parameters

Search Result 1,108, Processing Time 0.024 seconds

The effect of micro parameters of PFC software on the model calibration

  • Ajamzadeh, M.R.;Sarfarazi, Vahab;Haeri, Hadi;Dehghani, H.
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.643-662
    • /
    • 2018
  • One of the methods for investigation of mechanical behavior of materials is numerical simulation. For simulation, its need to model behavior is close to real condition. PFC is one of the rock mechanics software that needs calibration for models simulation. The calibration was performed based on simulation of unconfined compression test and Brazilian test. Indeed the micro parameter of models change so that the UCS and Brazilian test results in numerical simulation be close to experimental one. In this paper, the effect of four micro parameters has been investigated on the uniaxial compression test and Brazilian test. These micro parameters are friction angle, Accumulation factor, expansion coefficient and disc distance. The results show that these micro parameters affect the failure pattern in UCS and Brazilian test. Also compressive strength and tensile strength are controlled by failure pattern.

Evaluation of Component Performance of a Commercial Micro Gas Turbine (상용 마이크로 가스터빈의 구성부 성능분석)

  • Lee, J.J.;Yun, J.E.;Kim, T.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.331-337
    • /
    • 2005
  • This study aims at evaluation of component performance of a commercial micro gas turbine by detailed measurements of various system parameters. A test facility to measure performance of a micro gas turbine was set up. Performance parameters such as turbine exit temperature, exhaust gas temperature, engine inlet temperature, compressor discharge pressure and fuel flow rate were measured. Variations in measured data and estimated performance parameters were analyzed. In addition to overall engine performance, component characteristic parameters including the turbine inlet temperature, the compressor efficiency, the turbine efficiency, the recuperator effectiveness were estimated. Behaviors of the estimated characteristic parameters with operating condition change were examined.

  • PDF

Development of Components in Micro Solid Propellant Thruster. (마이크로 고체 추진제 추력기의 요소 개발)

  • 이종광;이대훈;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.147-150
    • /
    • 2003
  • The purpose of this research was to develope components of micro solid propellant thruster. Micro solid propellant thruster had four basic components: combustion chamber, nozzle, solid propellant and micro heater for ignition. A performance of micro heater and characteristic of solid propellant was investigated. Micro heater was fabricated by conventional MEMS process and Platinum layer was used for heating element. Effect of geometry parameters on micro heater was tested. The temperature responses of heater with respect to each parameters was compared for a given electrical power. The characteristic of solid propellant(HTPB/AP) was investigated to obtain burning velocity in small chamber. Additionally, a capacity of filling propellant with high viscosity in small chamber was checked to guarantee for the micro fabrication.

  • PDF

Study on Machining Speed according to Parameters in Micro ECM (가공 인자에 다른 미세 전해 가공 속도 변화 연구)

  • Kwon, Min-Ho;Park, Min-Soo;Shin, Hong-Shik;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • In micro electrochemical machining (micro ECM), machining conditions have been determined to maintain a small side gap and to machine a workpiece stably However, machining speed is slow. To improve machining speed while maintaining the form accuracy, the paper investigates machining parameters such as pulse amplitude, duty ratio, pulse on-time, and the electrolyte's temperature and concentration. The experiment in this study shows that the electrolyte's concentration is the key factor that can reduce machining time while maintaining the form accuracy Micro square columns were fabricated to confirm the machining parameters' effects.

Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings

  • Yazdani, Raziye;Mohammadimehr, Mehdi;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.93-109
    • /
    • 2019
  • In the present study, vibration analysis of double bonded micro sandwich cylindrical shells with saturated porous core and carbon/boron nitride nanotubes (CNT/BNNT) reinforced composite face sheets under multi-physical loadings based on Cooper-Naghdi theory is investigated. The material properties of the micro structure are assumed to be temperature dependent, and each of the micro-tubes is placed on the Pasternak elastic foundations, and mechanical, moisture, thermal, electrical, and magnetic forces are effective on the structural behavior. The distributions of porous materials in three distributions such as non-linear non-symmetric, nonlinear-symmetric, and uniform are considered. The relationship including electro-magneto-hydro-thermo-mechanical loadings based on modified couple stress theory is obtained and moreover the governing equations of motion using the energy method and the Hamilton's principle are derived. Also, Navier's type solution is also used to solve the governing equations of motion. The effects of various parameters such as material length scale parameter, temperature change, various distributions of nanotube, volume fraction of nanotubes, porosity and Skempton coefficients, and geometric parameters on the natural frequency of double bonded micro sandwich cylindrical shells are investigated. Increasing the porosity and the Skempton coefficients of the core in micro sandwich cylindrical shell lead to increase the natural frequency of the structure. Cylindrical shells and porous materials in the industry of filters and separators, heat exchangers and coolers are widely used and are generally accepted today.

Fabrication of Micro Tool Electrode for Machining Micro Structures using Wire Electrical Discharge Grinding(WEDG) (WEDG 방법을 이용한 마이크로 구조물 가공용 미세공구 제작)

  • Park Sung-Jun;Ahn Hyun-Min;Lee Kyo-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.13-20
    • /
    • 2005
  • Micro EDM process is generally used for machining microholes, cavities, and three dimensional shapes. For machining micro structures, first of all, micro tool electrode is indispensable and WEDG system is proposed for tool fabrication method. When using WEDG, its machining characteristics are highly affected by many EDM parameters such as applied voltage, current, rotation speed, capacitance, and pulse duration. Therefore, the design of experiment is introduced to fully understand the effect of the EDM parameters on machining tool electrode. And an attempt has been made to develop the mathematical model for predicting the size of the tool electrode by calculating spark distance. The suggested model was verified with experiment and predicted working gap distance is in good accord with the measured value.

MICRO INJECTOR BASED ON DIGITAL DRIVE AND CONTROL FOR BIOMEDICAL ENGINEERING

  • Hou, Liya;Zhang, Weiyi;Mu, Lili;Zhu, Li
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2349-2351
    • /
    • 2003
  • This paper reports a novel microfluidic system, by which microfluidic delivery, transport and control can be digitally realized in femtoliter scale. Microelectronic grade $N_2$ from a pressurized canister was passed through HPLC tubing into a micro injector. The micro injector was driven and controlled digitally by the control system that can apply various control parameters such as pulse frequencies. A front-end of micro nozzle was inserted the dyed oil to collect droplets injected. The diameter of a droplet was measured by a microscope and a CCD camera, and then its volume can be calculated on the assumption that the droplet is spherical. The micro nozzles were simply pulled in glass capillary tubes by the micro puller self-made, and the geometry parameters of the micro nozzles can be adjusted easily. Experiments have successfully been carried out, and the results demonstrated that the proposed digital micro injector possesses three significant advantages : precise ultra-small liquid volume in femtoliter scale, digital microfluidic control and micro devices fabricated by simple glass process, not based on IC process.

  • PDF

Micro-Bubble Generating Properties on Gas/Liquid Flow Rate Ratio with the Sludge Flotation/Thickening Apparatus (슬러지 부상농축장치의 기·액 유량비에 따른 미세기포 발생 특성)

  • Lee, Chang-Han;Park, Jong-Won;Ahn, Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • The sludge flotation/thickening apparatus equipped a micro-bubble generating pump was used to investigate micro-bubble generating properties on operational parameters. We evaluated micro-bubble generating properties as results to be operated the apparatus by operational parameters which are pump discharge pressure, air/water ratio(A/W ratio), air flow rate, and water flow rate. Micro-bubble generating efficiencies in pumps without recycling flow and with 50% of recycling flow was found to be very efficient on optimum A/W ratio from 1.06 to 3.62% and optimum A/W ratio from 1.05 to 4.06%, respectively. In condition of 3.6% of A/W ratio, we showed that the apparatus could be generated 36,000 ppm of micro-bubble concentration to be optimum treatment efficiency in sludge thickening process.

AN OPTIMIZATION OF ONEBODY TYPE IMPLANT SYSTEM CONSIDERING VARIOUS DESIGN PARAMETERS (다양한 설계변수를 고려한 수직하중을 받는 일체형 임플랜트의 최적설계)

  • Choi Jae-Min;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.185-196
    • /
    • 2006
  • Statement of problem: The researches on the influence of design variables on the stress distribution in cortical and trabecular bones and on optimal design for implant system were limited. Purpose: The purpose of this study is to identify the sensitivities of design parameters and to suggest the optimal parameters for designing the onebody type implant system. Material and methods: Stresses arising in the implant system were obtained by finite element analysis using a three dimensional model. An onebody type implant system[Oneplant (Warrantec. Co. Ltd., Korea)] was considered in this study. Vortical load(150 N) was applied on the top of the abutment along the axial direction. The initial design variables set for sensitivity analysis were radius of fixture, numbers of micro thread, numbers of power thread, height of micro thread, future length, tapered angle of future, inclined angle of thread, width of micro thread and width of power thread. The statistical technique of Design of Experiments(DOE) was applied tn the simulation model to deduce effective design parameters on stress distributions in bones. The deduced design parameters were incorporated into a fully automated design tool which is coupled with the finite element analysis and numerical optimization to determine the optimal design parameters. Results: 1. The result of sensitivity analysis showed six design variables - radius of future, tapered angle of fixture, inclined angle of thread, numbers of power thread, numbers of micro thread and height of micro thread - were more influential than the others. 2. The optimal values of design variables can be deduced by coupling finite element analysis (FEA) and design optimization tool(DOT).

The Improvement of Summer Season Precipitation Predictability by Optimizing the Parameters in Cumulus Parameterization Using Micro-Genetic Algorithm (마이크로 유전알고리즘을 이용한 적운물리과정 모수 최적화에 따른 여름철 강수예측성능 개선)

  • Jang, Ji-Yeon;Lee, Yong Hee;Choi, Hyun-Joo
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.335-346
    • /
    • 2020
  • Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.