• Title/Summary/Keyword: Micro optical system

Search Result 355, Processing Time 0.042 seconds

Effect of Combination with Aspherical Lens in the Micro Optical System Design (마이크로 광학계의 설계에서 비구면 렌즈의 조합 효과)

  • 김명중;김한섭;박규열;전종업;김의중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1422-1425
    • /
    • 2003
  • In the design of optical system, important variables of optical system (including indices, shapes, spaces, stops. etc.) must manipulate in order to balance out offensive aberration. In this paper, it carried out a basic study on the design of micro optical system usable for the acquaintance of visual information in the particular conditions such as capsule type endoscopes. In this study, specification for design of optical system selected voluntarily and the basic design of optical system carried out by using the ray tracing method on the assumption that ideal lenses without aberrations. In the designed optical system, the optimization including aberration correction and the performance evaluation of optical system carried out by using the CODE-V. The final designed optical system consists of seven sheets of lenses. Also the results of performance evaluation. the micro optical system combined with aspherical lenses was confirmed to have improved optical performance as compared with the micro optical system consisted of spherical lenses.

  • PDF

Four-beam Interference Optical System for Laser Micro- structuring Using Picosecond Laser

  • Noh, Ji-Whan;Lee, Jae-Hoon;Shin, Dong-Sig;Sohn, Hyon-Kee;Suh, Jeong;Oh, Jeong-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • A four beam interference optical system for laser micro structuring using a pulse laser was demonstrated. The four beam interference optical system using a pulse laser(picosecond laser) can fabricate micro structure on mold material(NAK80) directly. Micro structure on the polymer can be reproduced economically by injection molding of the micro structure on the mold material. The four beam interference optical system was composed by the DOE(Diffractive Optical Element) and two lenses. The laser intensity distribution of four beam interference was explained by an interference optics point of view and by the image optics point of view. We revealed that both views showed the same result. The laser power distribution of a $1{\mu}m$ peak pattern was made by the four beam interference optical system and measured by the objective lens and CCD. A $1{\mu}m$ pitch dot pattern on the mold material was fabricated and measured by SEM(Scanning Electron Microscopy).

Development of a Fast Alignment Method of Micro-Optic Parts Using Multi Dimension Vision and Optical Feedback

  • Han, Seung-Hyun;Kim, Jin-Oh;Park, Joong-Wan;Kim, Jong-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.273-277
    • /
    • 2003
  • A general process of electronic assembly is composed of a series of geometric alignments and bonding/screwing processes. After assembly, the function is tested in a following process of inspection. However, assembly of micro-optic devices requires both processes to be performed in equipment. Coarse geometric alignment is made by using vision and optical function is improved by the following fine motion based on feedback of tunable laser interferometer. The general system is composed of a precision robot system for 3D assembly, a 3D vision guided system for geometric alignment and an optical feedback system with a tunable laser. In this study, we propose a new fast alignment algorithm of micro-optic devices for both of visual and optical alignments. The main goal is to find a fastest alignment process and algorithms with state-of-the-art technology. We propose a new approach with an optimal sequence of processes, a visual alignment algorithm and a search algorithm for an optimal optical alignment. A system is designed to show the effectiveness and efficiency of the proposed method.

  • PDF

Design and Fabrication of Miniaturized Optical Chopper Operated by Electromagnetic Actuation

  • Kim, Ho Won;Min, Seong Ki;Choi, Young Chan;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.165-169
    • /
    • 2014
  • An existing infrared (IR) analysis system is generally composed of infrared source, IR focusing lenses, IR detector, and optical chopper. An optical chopper is widely used in combination with lock-in amplifier to improve the signal-to-noise ratio by periodically interrupting incident light beam. During recent years, a few researches on miniaturized optical chopper have been reported to apply to micro-scaled optical systems. In this paper, a micro optical chopper operated by electromagnetic actuation is proposed and applied to a miniaturized micro-scaled optical system operating in IR spectral range. Additionally, the fabrication method of the proposed micro chopper is demonstrated. The proposed micro optical chopper is composed of the polydimethylsiloxane (PDMS) membrane, solenoid, and permanent magnet. The permanent magnet is bonded on the PDMS membrane using an ultraviolet-activated adhesive. The operation of the chopper is based on the attractive and repulsive forces between permanent magnet and solenoid induced by an electrical current flowing through the solenoid. The fabricated micro optical chopper could operate up to 200 Hz of frequency. The maximum operating distance of the chopper with 7mm diameter membrane was $750{\mu}m$ at 100 Hz of frequency.

Development of a Novel Micro-stereolithography Technology using UV Lamp and Optical Fiber (UV 램프와 광섬유를 이용한 새로운 개념의 마이크로 광 조형기술의 개발)

  • Choi, Ji-Soon;Lee, Seung-Pyo;Ko, Tae-Jo;Lee, In-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.12 s.189
    • /
    • pp.117-121
    • /
    • 2006
  • Generally, micro-stereolithography technology uses laser and complex optical system as light source and light delivery system, respectively. In this research, a novel micro-stereolithography technology that uses UV lamp that is more economical than UV laser as light source and optical fiber that is simpler than previous light delivery system has been developed. Furthermore, precise control system that is composed of 3-axis linear stage and shutter has been used to fabricate truly three dimensional micro-structure. For confirming the feasibility of developed micro-stereolithography apparatus, the solidification experiments were conducted. The solidification widths and depths datum of photopolymer as varying scanning speed of the UV light have been obtained. Using developed apparatus, some micro structures were fabricated successfully.

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

Optical Principle of Microlithography system (Micro-Lithography의 광학적 원리)

  • 이성묵;임동규
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.07a
    • /
    • pp.109-114
    • /
    • 1991
  • 좋은(sub=micron) 분해능을 갖는 Photoresist film의 방법에 의한 Micro-Lithography의 발달은 반도체, Electro-Optic 등의 첨단산업에 큰 기여를 하였다. 본 내용은 이러한 PR을 이용한 Lithography System의 광학적인 원리에 대해 소개하고자 한다.

  • PDF

Fabrication and Aging effect of Micro OADM using Automatic Alignment System (자동 광축 정렬시스템을 이용한 초소형 광통신용 마이크로 OADM 제작 및 Aging effect)

  • S. K., Kim;Y. H., Seo;D. S., Choi;T. J., Jae;K. H., Whang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.644-647
    • /
    • 2004
  • Optical add/drop multiplexers (OADMs), one of the new network elements, will play a key role enabling greater connectivity and flexibility in the dense wavelength-division multiplexing (DWDM) networks. The importance of OADMs is that they allow the optical network to be local transmitting/extraction on a wavelength-by-wavelength basis to optimize traffic, efficient network utilization, network growth, and to enhance network flexibility. Also, the automatic assembly system of micro optical filters and fibers is a key technology in the development of optical modules with high functionality. Recently, one of remarkable tends in the development of optical communication industry is the miniaturization and integration of products. In this research, we have developed a system capable of automatic alignment of a film filter and a lensed fiber in order to improve the speed and losses in the optical fiber to filter alignment of optical modules. Using the developed automatic alignment system and silicon optical benches, we have fabricated the micro OADM and measured the insertion loss and aging effect.

  • PDF

Fabrication of Micro Mirror Array for Small Form Factor Optical Pick-up by Micro UV-Molding (마이크로 UV성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작)

  • Choi Yong;Lim Jiseok;Kim Seokmin;Sohn Jin-Seung;Kim Hae-Sung;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.477-481
    • /
    • 2005
  • Wafer scale micro mirror array with high surface quality for small form factor (SFF) optical pick-up was fabricated by micro UV-molding. To replicate micro mirror array for SFF optical pick-up, a high- precision mold was fabricated using micro-machining technology. Wafer scale micro mirror array was UV-molded using the mold and then the process was optimized experimentally. The surface flatness and roughness of UV-molded micro mirror array were measured by white light scanning interferomety system and analyzed the transcribing characteristics. Finally, the measured flatness of UV-molded micro mirror away for SFF optical pick-up, which was fabricated in the optimum processing condition, was less than 70nm.