• Title/Summary/Keyword: Micro machine tool

Search Result 287, Processing Time 0.034 seconds

Micro-Pattern Machining Characteristics Evaluation of $Si_3N_4$-hBN based Machinable Ceramics Using Powder Blasting Process (파우더 블라스팅에 의한 $Si_3N_4$-hBN계 머시너블 세라믹스의 미세패턴 가공성 평가)

  • 박동삼;조명우;김동우;조원승
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.33-39
    • /
    • 2004
  • Sandblasting has recently been developed into a powder blasting technique for brittle materials. In this study, the machinability of $Si_3N_4$-hBN based machinable ceramics are evaluated for micro - pattern making processes using powder blasting. Material properties of the developed machinable ceramics according to the variation of h-BN contents give a good machinability to the ceramics. The effect of scanning times, the size of patterns and variation of BN contents on the erosion depth of samples without mask and samples with different mask patterns in powder blasting of $Si_3N_4$-hBN ceramics are investigated. The Parameters are the impact angle of $90^{\circ}$, the scanning times of nozzle up to 40, and the stand-off distances of 100mm The widths of masked pattern are 0.1mm 0.5mm and 1mm. The powder used is Alumina particles, WA#600. and the blasting pressure of powder is 0.2MPa. Through required experiments, the results are investigated and analyzed. As the results, the machinability of the developed ceramics increases as the BN contents in the ceramics.

Thermo-dynamic Characteristics Of High Temperature Nitinol Shape Memory Alloy (고온용 Nitinol 형상기억합금의 열적/동역학적 특성평가)

  • Cha S.Y.;Park S.E.;Cho C.R.;Park J.K.;Jeong S.Y.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.441-445
    • /
    • 2005
  • In the resent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. But, no detailed researches between the thermo-dynamic property in Nitinol alloy have been done yet. In this study, the thermal property of high temperature Nitinol shape memory alloy were evaluated using differential scanning calorimeter(DSC). The structure property was investigated using X-ray diffraction(XRD). A dynamic mechanical analyzer(DMA) with three point bending mode was used to study storage and loss modulus of shape memory alloy according to the thirteen frequencies in the temperature range between 30 and $200^{\circ}C$. The effects of the temperature heating/cooling rate, the frequency on the damping capacity have been systematically investigated. Such a frequency and temperature changes also influenced significantly to the damping behavior of the shape memory alloy. It was also found that Nitinol exhibited high damping capacity during phase transformation.

  • PDF

Research on Light Reflection Effect of the Optical Micro Pattern Using Ultra-Precision Technology (초정밀가공 기술을 이용한 광학 마이크로패턴의 광 반사 효과에 관한 연구)

  • Yoo, Chun-Kun;Yoon, Chul-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.621-628
    • /
    • 2009
  • Because the Ultra-Precision Technology increase its competitiveness in the field of the design, precision of processing technology, confidence and fixation degree are major considerations. According to Pattern shapes using these processing technologies, Light Reflection has influence on the sense of sight about human being. Based on background of these studies, we draw a plan about a round workpiece using a 3D design program and analyze the effect on Light Reflection changing a pattern angle and a source of light through SPEOS program in this research. We make Pattern form as V-Shape, and compare the area distributed by Light Reflection by classifying angle into 4 and analyze changes according to a source of light. In order to measure and evaluate the data from simulation analysis we has manufactured Diamond Tool and has processed Pattern precision using a Ultra-Precision Machine. Based on the result of this study, we forecast that the field of design will achieve rapid growth due to Ultra-Precision Technology in the world market.

  • PDF

Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures (미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim Dae-Il;Chang Seung-Hwan
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, parametric study was carried out to design sandwich structures for EDM machines controlling stacking sequence, stacking thickness of composites and rib configuration. Sandwich structures which are dealt with in this paper are composed of fibre reinforced composite for skin material and foam or resin concrete for core materials. The sandwich column has cruciform rib to enhance bending stiffness of the structure and the bed has several vertical ribs to resist the normal forces and vibration. The design parameters such as rib thickness and stacking sequence were controlled to enhance the system robustness. Finite element analysis was also carried out to verify the variation of static and dynamic stiffness of the structures according to the variation of the parameters. Vibration tests were performed to verify the natural frequencies and damping ratios of the manufactured composite structures. The appropriate shape and configuration conditions for micro-EDM machine structures are proposed.

Tensile Strength Properties of the Diffusion Bonding Copula Shape for Micro PCD Tool Fabrication (초소형 PCD 공구 제작을 위한 확산접합부의 형상에 따른 인장강도 특성)

  • Jeong, Ba Wi;Kim, Uk Su;Chung, Woo Seop;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • This study involved the fabrication of precision machine tools using a polycrystalline diamond tip [sintered PCD and cemented carbide (WC-Co) tip] and WC-Co shanks via diffusion bonding with a paste-type nickel alloy filler metal. Diffusion bonding is a process whereby two materials are pressed together at high temperature and high pressure for a sufficient period of time to allow significant atomic diffusion to occur. For smooth progress, a filler metal of nickel alloy was used at the interface. Optical microscopy images were used to observe the copula of the bonded layer. It was confirmed that cracks occurred near the junction in all cases. The tensile strength of the bond was measured using a universal testing machine (UTM) with WC-Co proportional test specimens.

The development of Dy free MAGFINE and its applications to Motors

  • Honkura, Yoshinobu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.95-95
    • /
    • 2013
  • The NdFeB magnet can be classified into the sintered magnet and bonded magnet. The former has superior magnet characteristics but the degree of freedom in shape is highly restricted, whereas the latter has a high degree of freedom, but its magnet characteristics are inferior to the former. When a NdFeB magnet is used at the elevated temperature, part of Nd must be replaced with a high priced Dy to increase its coercive force. For these reasons, a Dy free and high performance NdFeB bonded magnet is desired strongly. The author successfully developed a Dy free NdFeB anisotropic bonded magnet based on discovery of new phenomena called as d-HDDR reaction and its mass production process such as a thermally balanced hydrogen reaction furnace, micro capsuled powder, compression molding / injection molding under magnetic field, magnetic die and so on. Applied to DC brush seat motor for automotive use, the motor has become 50% small in size and weight. The commercialization of a half sized motor for automotive use has been realized up to the market share of 30%. At present, its commercialization is extending to various types of motors such as power tool, ABS motor, wiper motor, window motor, electric bike power motor, and compressor motor. It is expected that the applications will be increasingly enlarged to EV motor, wind generator, EPS motor, washing machine, and glass cutting machine. This innovative technology has realized Dy free high performance magnet and mudt make big contribution to not only rare element strategies but also energy conservation.

  • PDF

The Effect of Pre-Heat Treatment Parameters on the Ion Nitriding of Tool Steel (금형공구강의 이온질화에 미치는 이전열처리 조건의 영향)

  • Lee, J.S.;Kim, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • The effects of pre-heat treatment(Q/T) on microstructure and hardness of STD11 and STD61 tool steel nitrided by micro-pulse plasma were investigated. The quenching temperature for obtaining matrix hardness of STD11 and STD61 steel on range of HRC 50 to HRC 60 desired for machine parts is about $1070^{\circ}C$ and $1020^{\circ}C$ respectively. The hardness of STD11 and STD61 quenched at the temperature was HRC 63 and HRC 56 respectively. The nitrided case depth of STD11 and STD61 nitrided at $550^{\circ}C$ for 5 hours was independent of pre-heat treatment condition and the depth was approximately $100{\mu}m$. However, hardness and compactness of nitrided layer on Q/T treated specimen were higher than the annealed specimen. The case depth increased linearly with the increase of nitriding temperature, however, the hardness of nitrided layer decreased with the increase of temperature. Phase mixture of ${\gamma}-Fe_4N$ and ${\varepsilon}-Fe_{2-3}N$ was detected by XRD analysis in the nitrided layer formed at the optimum nitriding condition. The optimum nitriding temperature was approximately $490^{\circ}C$ which was $10^{\circ}C$ lower than the tempering temperature for preventing softening behavior of STD11 and STD61 matrix during nitriding process and the surface hardness of nitrided layer obtained by optimum pre-heat treatment condition was about Hv1400.

  • PDF

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료 가공기술에 관한 연구)

  • 이석우;최헌종;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.969-972
    • /
    • 1997
  • Ultrasonic machining technology has been developed over recent years for he manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramic in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvement in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by he electrical or chemical characteristics of the work material, making it suitable for application to ceramics. In order to improve the currently used ultrasonic machining using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic machine composed of piezoelectric vibrator and horn. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

Development of Octagonal Ring Load Cell Based on Strain Rings (스트레인 링 이론 기반의 팔각링 로드셀 개발)

  • Kim, Joong-Seon;Jo, Hyeong-Geun;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.97-103
    • /
    • 2018
  • Force is a crucial element to be measured in various industries, especially the machine tool industry. Mega units of force are required in fields such as the heavy and ship industries. Micro/nano units of force are required for microparticles. The detection of force generates a physical transformation due to the force imposed from the outside, atlrnd electrical voltage signals are obtained from the system. For the detection of force, an octagonal ring load cell based on circular ring theory is designed and produced. To design the octagonal strain ring, theoretical values with data from the ANSYS program are compared to determine the size of the octagonal strain ring. An octagonal strain ring of the chosen size is made with the SCM415 material. The strain gauges are attached to the octagonal strain ring, designed to construct a full Wheatstone bridge. The LabVIEW program is used to measure the data, and strain values are found. With the octagonal ring load cell completed in this way, experiments are conducted by imposing forces on the tangential axis and radial axis. Experiments are performed to verify if the octagonal ring load cell conducts measurements properly, and theoretical values are analyzed to find any differences. The data will later be used in further research to develop a machine-tool dynamometer.

Machining Characteristics Elevation by Micro-structure Improvement of Aluminum Alloy (알루미늄 합금의 미세조직 개선에 의한 절삭 가공 특성 향상)

  • 채왕석;김경우;최현민;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.290-295
    • /
    • 2002
  • This research has been carried out to experiment machining characteristics by elements addition and subtraction of AC8B and sample that is used fur car piston materials. 1.Mechanical properties of development sample expressed unique mechanical properties than AC8B. 2. Cutting resistance of development sample decreased about 10% than AC8B according to increase of the cutting speed. 3. According to increase of the feedrate, all comparison workpiece found that specific cutting resistance decrease. 4. It was found that sample's machining characteristics that is developed by addition and subtraction of elements improves.

  • PDF