• Title/Summary/Keyword: Micro machine tool

Search Result 288, Processing Time 0.022 seconds

Micro-Deburring of Electro-Parts by Powder Blasting (Powder Blasting을 이용한 전자부품의 미세버 제거)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.314-318
    • /
    • 2002
  • Several types of burrs form on the edges of all machined and stamped parts. These burrs must be removed to prevent interference fits or short circuits, to improve fatigue life or to prevent injury. Despite the full or partial automation of FMC or FMS, deburring operations to obtain workpiece with fine surface quality are difficult to be automated since the occurrence and condition of burr are not constant. This study focused on developing micro-deburring technique for small electro- parts produced by press process. The successful performance was demonstrated by deburring experiment using the powder blasting.

  • PDF

Effects of Machining Conditions for Improvement of Surface Roughness on Micro End-Milling (마이크로 엔드밀 가공시 가공인자가 표면거칠기 향상에 미치는 영향)

  • Cho, Byoung-Moo;Kim, Sang-Jin;Park, Hee-Sang;Bae, Myung-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-76
    • /
    • 2008
  • Micro end-milling is one of effective technology that is able to do ultra-precision machining while increasing the productivity and has wide application field. But selection of machining condition is very difficult because of complicated machining mechanism. Therefore this study was carried out to select working factors to get the optimum surface roughness. Machining condition are depth of cut, feed rate and spindle revolution. The result of this study showed that Surface roughness was affected, in the other of depth of cut, spindle revolution, feed rate. And this study provided an regression equation relating surface roughness to working factors through Regression Analysis and determination coefficient of regression equation had a satisfactory reliability of 79%.

Study on Deburring and Burr Mechanism of Fabricated Micro-Pattern on Cylindrical Workpiece (원통형 공작물에서 미세패턴의 디버링 및 버의 생성 메커니즘)

  • Jin, Dong-Hyun;Lee, Sung-Ho;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.251-255
    • /
    • 2017
  • Burr generation is inevitable during the machining of a micro-pattern, and it is difficult to distinguish between the pattern and burr because they have a very small dimensions. In this study, a micro-pattern with a pitch of $60{\mu}m$and height of $1{\mu}m$ was fabricated on a cylindrical surface using a turning machine. The structure of a burr and its generation mechanism were determined, and a magnetic abrasive deburring process was used to improve the accuracy of the pattern. As a result, when fabricating a micro-pattern, it was shown that the direction of the burr was determined by the feed direction of the tool. The measured pattern height was $1.018{\mu}m$ when the magnetic flux density and spindle speed were respectively 40 mT and 1600 rpm, respectively, during magnetic abrasive deburring, which were determined to be the optimal conditions for processing.

Modeling of Cutting Parameters and Optimal Process Design in Micro End-milling Processes (마이크로 엔드밀링 공정의 절삭계수 모델링 및 최적 공정설계)

  • Lee, Kwang-Jo;Chung, Sung-Chong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.261-269
    • /
    • 2009
  • Micro end-milling process is applied to fabricate precision mechanical parts cost-effectively. It is a complex and time-consuming job to select optimal process conditions with high productivity and quality. To improve the productivity and quality of precision mechanical parts, micro end-mill wear and cutting force characteristics should be studied carefully. In this paper, high speed machining experiments are studied to construct the optimum process design as well as the mathematical modeling of tool wear and cutting force related to cutting parameters in micro ball end-milling processes. Cutting force and wear characteristics under various cutting conditions are investigated through the condition monitoring system and the design of experiment. In order to construct the cutting database, mathematical models for the flank wear and cutting force gradient are derived from the response surface method. Optimal milling conditions are extracted from the developed experimental models.

  • PDF

A Development of Micro-Positioning Grinding Table using Piezoelectric Voltage Feedback (압전전압 궤환에 의한 미세구동 연삭테이블의 개발)

  • Nam, Soo-Ryong;Kim, Jeong-Du
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.48-58
    • /
    • 1995
  • A micro positioning system using piezoelectric actuators have very wide application region such as ultra-precision machine tool, optical device, measurement systen. In order ro keep a high precision displacement resolution, they use a position sensor and feedback the error. From the practical point of view, a high-resolution displacement sensor system are very expensive and difficult to guarantee such sensitive sensors work properly in the hard opera- tion environment of industry. In this study, a micro-positioning grinding table which does not require position sensor but uses piezoelectric voltage feedback, has been developed. It is driven by hystersis-considering reference input voltage which calculated from computer and then uses actuator/sensor characteristics of piezoelectric materials. From the result of experiments we proved a fast and stable response of micro-positioning system and suggested efficient technique to control the piezoelectric actuator. And through grinding experiments, it is revealed that a characteristics of ground surfaces transient to plastic deformation as extremely small depth of grinding.

  • PDF

A proposal of the electrochemical polishing method using the point electrode tools (점 전극을 이용한 전해연마법의 제안)

  • 이승훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.48-53
    • /
    • 1998
  • In this paper, the new electrochemical machining method is proposed for the micro unit fabrication by using the point electrode tools. The precision shape control capacity is improved by using the point electrode method. It was observed that an electric discharge phenomenon occurs during the electrochemical machining process by using the spraying and torrent type electrolyte supply method.

  • PDF

ENGINEERED SURFACE CONTROL IN TURNING PROCESS

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.24-33
    • /
    • 1995
  • The feasibility of generating controlled surface topographies in single-point conventional turning operations is investigated. First a mathematical model of the surface generation process was developed. Second in order to control the texture of the machined surface a micro-positioning stage and the associated command generation software were designed and built. Experimental examples have shown that surface texture can be precisely controlled and is in good agreement with the theoretical predictions.

  • PDF

Micromachining of Pyrex Class for Accelerometer (가속도 센서용 파이렉스 유리의 미세가공)

  • 김광현;최영현;최종순;박동삼;유우식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.268-273
    • /
    • 2002
  • The mechanical etching technique has recently been developed to a powder blasting technique for various materials, capable of producing micro structures larger than 100$\mu\textrm{m}$. This paper describes the performance of powder blasting technique in micromachining of pyrex for the accelerometer sensor and the effect of the number of nozzle scanning and the stand-off distance on the erosion depth.

  • PDF

Analysis of Micro Machining Characteristics using End-milling and Its Applications (초소경 엔드밀링을 이용한 미세 가공특성 분석 및 응용가공)

  • Choi, Hwan-Jin;Park, Eun-Suk;Jeon, Eun-Chae;Je, Tae-Jin;Choi, Doo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1279-1284
    • /
    • 2012
  • Micro structures which are widely used at various fields are commonly fabricated by lithograph, etching and laser methods. Recently, with the emergence of micro tools and ultra-precision machine tools, fabrication of the micro structures obtained using end-milling are studied. However, there are some problems due to the diameter of the micro end-mill getting smaller below $100{\mu}m$. The micro run-out resulted from miniaturization of end-mills have influence seriously on accuracy of micro structures. The error of run-out with a tooling jig showed a decrease of about $9.3{\mu}m$. Furthermore, micro structures with width of $30{\mu}m$ could be applied through experiments of slot machining obtained using 30 and $50{\mu}m$ end-mill. Also, narrow angle structures with $30^{\circ}$ angle could be applied through analysis of machining acute angle structures. Based on basic experiments, micro fluidics channels and spiral patterns for air bearing were machined.

A Study of Electrode Wear Estimation and Compensation for EDM Drill (방전 드릴링에서 전극 소모량 예측 및 보정)

  • Lee, Cheol-Soo;Choi, In-Hugh;Choi, Young-Chan;Kim, Jong-Min;Heo, Eun-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.3
    • /
    • pp.149-155
    • /
    • 2013
  • Electric discharging machining (EDM) is commonly adopted to machine the precise and tiny part when it is difficult to meet the productivity and the tolerance by the conventional cutting method. The die-sinking EDM method works well to machine the micro-parts and the perpendicular wall of die and mould, whereas EDM drilling, called super drill, is excellent to machine the deep and narrow hole regardless the material hardness and the hole location. However, the electrode wear is rapid compared to the conventional cutting tool and makes it difficult to control the electrode feeding and to machine precisely. This paper presents an efficient method to estimate the electrode wear using hole pass-through experiment while the stochastic method is used to compensate for the estimation model. To validate the proposed method, the commercial EDM drill machine is used. The experiment result shows that the electrode wear amount can be predicted very precisely.