• Title/Summary/Keyword: Micro laser light sheet

Search Result 5, Processing Time 0.021 seconds

Micro-LIF Measurement in a Micro-channel Using an Micro Laser Light Sheet (마이크로 레이저 평면빔을 이용한 마이크로채널 내에서의 Micro-LIF 측정)

  • Yoon, Sang-Youl;Kim, Jae-Min;Kim, Su-Hun;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1540-1545
    • /
    • 2004
  • Measurement of concentration fields in a micro-channel is the crucial technology in the area of Lab-on-a-chip to be used for various bio-chemical applications. It is wel-known that the only possible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been made so far due to the limit of light illumination. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having 5 microns thickness by a micro focus laser line generator. Nile Blue A was used as fluorescent dye for LIF measurement. The laser sheet beam illuminates an exact plane of concentration measurement in the micro-channel to increase the signal to noise ratio and reduce the depth uncertainty considerably.

  • PDF

Micro-LIF measurement of microchannel flow

  • Kim Kyung Chun;Yoon Sang Youl
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.65-74
    • /
    • 2004
  • Measurement of concentration distributions of suspended particles in a micro-channel is out of the most crucial necessities in the area of Lab-on-a-chip to be used for various bio-chemical applications. One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1\;to\;3\times3\;or\;5\times5$ pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

Application of Micro-Thin Laser sheet and Mixed Solvent for Micro-LIF Measurement in a Microchannel (마이크로 채널 내부의 Micro-LIF 측정을 위한 마이크로 레이저 평면빔과 혼합용매의 적용)

  • Yoon Sang Youl;Kim Jae Min;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.86-89
    • /
    • 2004
  • One most feasible way to measure the concentration field in the micro-channel is using micro-LIF(Laser Induced Fluorescence) method. However, an accurate concentration field at a given cross plane in a micro-channel has not been successfully achieved so far due to various limitations in the light illumination and fluorescence signal detection. The present study demonstrates a novel method to provide an ultra thin laser sheet beam having five(5) microns thickness by use of a micro focus laser line generator. The laser sheet beam illuminates an exact plane of concentration measurement field to increase the signal to noise ratio and considerably reduce the depth uncertainty. Nile Blue A was used as fluorescent dye for the present LIF measurement. The enhancement of the fluorescent intensity signals was performed by a solvent mixture of water $(95\%)$ and ethanol (EtOH)/methanol (MeOH) $(5\%)$ mixture. To reduce the rms errors resulted from the CCD electronic noise and other sources, an expansion of grid size was attempted from $1\times1$ to 3(3 or 5(5 pixel data windows and the pertinent signal-to-noise level has been noticeably increased accordingly.

  • PDF

Study of Optical Design Method for Ultra Slim Backlight System Using LED Light Source (LED광원을 이용한 초박형 백라이트에 대한 광학설계기법의 연구)

  • Han, Jeong-Min;Han, Jin-Woo;Kim, Byoung-Young;Kim, Jong-Yeon;Kim, Young-Hwan;Kim, Jong-Hwan;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.432-432
    • /
    • 2007
  • We studied optical simulation method for ultra slim backlight system. We designed 0.7mm thickness light guide plate and combined 48 white color LEDs for 12 inch wide size TFT-LCD. We designed flat shape PMMA light guide plate with both side patterned. It have vertical prism shape on upper side and ellipse dot pattern on the other side. We targeted 4500 nit brightness and uniform emission characteristic without hot spot or dark area. At first, we designed uniform emission area with more high brightness in center area and then, debugged light entering hot spot zone and direction of outgoing light flux. Although it was designing step, we obtained good result with reverse prism optical sheet and it had good repeatability because it was based on the stamper method in injection process without laser engraving or micro groove engraving method.

  • PDF