• Title/Summary/Keyword: Micro drill

Search Result 74, Processing Time 0.024 seconds

A study on the machining of micro-extruding die using micro-drilling (마이크로 드릴링을 이용한 미세압출다이 가공에 관한 연구)

  • 민승기;제태진;이응숙;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.161-166
    • /
    • 2003
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\phi50\mu m$ micro-drill which is coated with diamond is used for drilling of super micro-hole sizes. For the machining of taper parts of entrance and exit, drill having $\phi50\mu\textrm{mm}$ inclination angle $20^{\circ}$and angle $30^{\circ}$ is used. This is useful for anti tool-breakage and excessive too-wear in drilling process. After micro-drilling, the polishing process by diamond abrasive and polishing wood s carried out for increasing surface roughness.

  • PDF

A study on the micro-hole machining for micro-extruding die (극세선용 압출다이의 미세구멍 가공기술 연구)

  • 민승기;제태진;이응숙;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.202-205
    • /
    • 2002
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\Phi$ 50${\mu}{\textrm}{m}$ micro-drill which is coated with diamond is used for drilling of super micro-hole sues. For the machining of taper parts of entrance and exit, drill having $\Phi$ 9mm inclination angle 20$^{\circ}$ is used. This is useful for anti tool-breakage in drilling process. After micro-drilling, the polishing process by abrasive is carried out for increasing surface roughness.

  • PDF

A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine (마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구)

  • 민승기;이동주;이응숙;강재훈;김동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

A Study on the Wear Condition Diagnosis of Grinding Wheel in Micro Drill-bit Grinding System (마이크로 드릴비트 연마 시스템 연삭휠의 마모 진단 연구)

  • Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.77-85
    • /
    • 2022
  • In this study, to diagnose the grinding state of a micro drill bit, a sensor attachment location was selected through random vibration analysis of the grinding unit of the micro drill-bit grinding system. In addition, the vibration data generated during the drill bit grinding were collected from the grinding unit for the grinding wheels under the steady and worn conditions, and data feature extraction and dimension reduction were performed. The wear of the micro-drill-bit grinding wheel was diagnosed by applying KNN, a machine-learning algorithm. The classification model showed excellent performance, with an accuracy of 99.2%. The precision, recall and f1-score were higher than 99% in both the steady and wear conditions.

Development of Micro-hole Drilling Machine and Assessment of cutting Performance (마이크로흘 드릴링 머신의 개발 및 절삭성능 평가)

  • 김민건;유병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF

Optimum Shape Design of Cemented Carbide Micro-Drill in Consideration of Productivity

  • Kim, Gun-Hoi;Kwon, Ji-Yong;Lee, Sung-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.264-268
    • /
    • 2003
  • Recently reduction of industrial products in size and weight has been increased by application of micro-drills in gadgets of high precision and a great interest of a micro-drilling has been raised. Due to the lack of tool stiffness and the chip packing, the micro-drilling requires not only the robust tool structure which has not affected by vibration but also effective drilling methods designed to prevent tool fracture from cutting troubles. This paper presents an optimum design shape of a 0.15 mm micro-drill associated with a new manufacturing process to improve the production rate and to lengthen the tool life and suggestions on the micro-drilling characteristic properties associated with the tool life and workpiece quality.

  • PDF

Optimum Shape Design of Cemented Carbide Micro-drill in Consideration of Productivity (생산성을 중시한 초경합금 소재 마이크로 드릴의 최적 형상설계)

  • 김건회
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.133-140
    • /
    • 2004
  • Recently reduction of industrial products in size and weight has been increased by application of micro-drills in gadgets of high precision and a great interest of a micro-drilling has been raised. Due to the lack of tool stiffness and the chip packing, the micro-drilling requires not only the robust tool structure which has not affected by vibration but also effective drilling methods designed to prevent tool fracture from cutting troubles. This paper presents an optimum design shape of a 0.15 mm micro-drill associated with a new manufacturing process to improve the production rate and to lengthen the tool life and suggestions on the micro-drilling characteristic properties associated with the tool life and workpiece quality.

A Study on Micro Drill-Bit Measurement Using Images (영상을 이용한 미세 드릴비트 측정에 관한 연구)

  • Kwak, Dong-gyu;Choi, Han-go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.3
    • /
    • pp.90-95
    • /
    • 2015
  • This study presents a method to test quite small-sized and light-weighted micro-drill bits which are used to make holes in printed circuit boards(PCB). After getting images of micro-drill bits through the high resolution microscope, we developed image processing algorithms to detect fiducial points, and then measured diverse factors of the drill-bit based on these points. We also developed the window-based inspection system to automatically discriminate normal and abnormal status. For the relative comparison of its performance, the system was compared with an existing inspection system using test images. Experimental results showed that the proposed system slightly improved performance, and also classified correctly some misjudged errors which were occurred in the existing system.

Model for predicting tool life of diamond abrasive micro-drills during micro-drilling of ceramic green bodies (세라믹 성형체의 미소구멍 가공 시 다이아몬드 입자 전착 드릴의 공구 수명 예측 모델)

  • 이학구;이대길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.593-598
    • /
    • 2003
  • Ceramic plates containing many micro-holes are used in diverse applications such as MCP (Microchannel Plate). catalytic converters, filters, electrical insulators in integrated circuits, and so on. One of the efficient methods for machining many holes in ceramic plates is wet drilling of ceramic green bodies followed by sintering them. Since the strength of ceramic green bodies is much lower than the strength of sintered ceramic plate, ceramic green bodies can be drilled with high feed rate. The axial force during micro-drilling of ceramic green bodies increases rapidly at high feed rate, which induces the crack in workpiece. Therefore, the tool lift of micro-drill with respect to feed rate may be determined by the predicting increase of axial force. In this work, the axial force during micro-drilling was calculated using the chip flow model on the micro-drill tip. from which the tool life of diamond abrasive micro-drill during micro-drilling of ceramic green bodies was calculated.

  • PDF