• Title/Summary/Keyword: Micro die

Search Result 239, Processing Time 0.036 seconds

The Influence of Microwave Sintering Process on the Adaptation of CAD/CAM Zirconia Core (마이크로 웨이브 소결 과정이 CAD/CAM 지르코니아 코아의 적합도에 미치는 영향)

  • Kim, Keun Bae;Kim, Jee Hwan;Lee, Keun-Woo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.95-107
    • /
    • 2009
  • The purpose of this research was to examine the fitness of zirconia cores that were made by different sintering methods; generic electricity furnace and microwave furnace. Firstly, 12 cores for each group were made by using each different sintering process and attached them to a metal die with silicon. The internal and marginal gap of sintered zirconia was measured by using Skyscan 1076 micro-CT, then it was reorganized by CT-An software. To each samples, we extracted B-L image, M-D image of cutting side, and cross-sectional side of tooth long axis and calculated the mean value of marginal, axial, and occlusal gap each side. Results: 1. The mean marginal gap of sintered zirconia was $36.20{\mu}m$ for EVE, $47.67{\mu}m$ for LAV, $52.47{\mu}m$ for DEN, and $54.63{\mu}m$ for CER. 2. For the axial wall, the research showed the largest value of $63.49{\mu}m$ for EVE, but there were no statistical significance. 3. In related to the occlusal internal measurement, DEN showed the smallest value ($77.06{\mu}m$), EVE and CER showed significantly high value. From this study, it is suggested that CAD/CAM zirconia core which was made in the process of microwave sintering has clinically acceptable values in marginal and internal gap.

3D Measurement System of Wire for Automatic Pull Test of Wire Bonding (Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발)

  • Ko, Kuk Won;Kim, Dong Hyun;Lee, Jiyeon;Lee, Sangjoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구)

  • Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.

Formation of Anodic Films on Pure Mg and Mg alloys for Corrosion Protection

  • Moon, Sungmo;Nam, Yunkyung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.16-16
    • /
    • 2012
  • Mg and its alloys have been of great interest because of their low density of 1.7, 30% lighter than Al, but their wide applications have been limited because of their poor resistances against corrosion and/or abrasion. Corrosion resistance of Mg alloys can be improved by formation of anodic films using anodic oxidation method in aqueous electrolytes. Plasma electrolytic oxidation (PEO) is one of anodic oxidation methods by which hard anodic films can be formed as a result of micro-arc generation under high electric field. PEO method utilize not only substrate elements but also chemical components in electrolytes to form anodic films on Mg alloys. PEO films formed on AM50 magnesium alloy in an acidic fluozirconate electrolyte were observed to consist of mainly $ZrO_2$ and $MgF_2$. Liu et al reported that PEO coating on AM30 Mg alloy consists of $MgF_2$-rich outer porous layer and an MgO-rich dense inner layer. PEO films prepared on ACM522 Mg die-casting alloy in an aqueous phosphate solution were also reported to be composed of monoclinic $Mg_3(PO_4)_2$. $CeO_2$-incorporated PEO coatings were also reported to be formed on AZ31 Mg alloys in $CeO_2$ particle-containing $Na_2SiO_3$-based electrolytes. Magnesium tin hydroxide ($MgSn(OH)_6$) was also produced on AZ91D alloy by PEO process in stannate-containing electrolyte. Effects of $OH^-$, $F^-$, $PO{_4}^{3-}$ and $SiO{_3}^{2-}$ ions and alloying elements of Al and Sn on the formation of PEO films on pure Mg and Mg alloys and their protective properties against corrosion have been investigated in this work. $PO{_4}^{3-}$, $F^-$ and $SiO{_3}^{2-}$ ions were observed to contribute to the formation of PEO films but $OH^-$ ions were found to break down the surface films under high electric field. The effect of pulse current on the formation of PEO films will be also reported.

  • PDF

Study of Optimal Process Conditions of 3D Porous Polymer Printing for Personal Safety Products (개인안전 제품을 위한 3 차원 다공성 폴리머 프린팅의 최적화 공정조건에 대한 연구)

  • Yoo, Chan-Ju;Kim, Hyesu;Park, Jun-Han;Yun, Dan-Hee;Shin, Jong-Kuk;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.333-339
    • /
    • 2016
  • In this paper, a fundamental experiment regarding the formation of porous 3D structures for personal safety products using 3D PPP (Porous Polymer Printing) was introduced for the first time. The filament was manufactured by mixing PP (Polypropylene) and CBA (Chemical Blowing Agent) with polymer extruder, and the diameter of the filament was approximately 1.75mm. The proposed 3D PPP method, combined with the conventional FDM (Fused Deposition Modeling) procedure, was influenced by process parameters, such as the nozzle temperature, printing speed and CBA density. In order to verify the best processing conditions, the depositing parameters were experimentally investigated for the porous polymer structure. These results provide parameters under which to form a multiple of 3D porous polymer structures, as well as various other 3D structures, and help to improve the mechanical shock absorption for personal safety products.

A Study on the Injection Mold with Superhydrophobic Surface Properties Using Nanosecond Laser Machining (나노초 레이저 가공을 활용한 초소수 표면 특성을 가지는 사출 금형에 관한 연구)

  • Jung-Rae Park;Hye-Jin Kim;Ji-Young Park;Si-Myung Sung;Seo-Yeon Hong;Ki-Hyeok Song
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.48-54
    • /
    • 2023
  • In this study, an injection mold with ultra-small surface properties was manufactured using nanosecond laser processing. A superhydrophobic characteristic analysis was performed on the PET specimen manufactured through this. To this end, a hydrophobic pattern was defined using the Cassie-Baxter model. The defined features were selected with a spot diameter of 25um and pitch spacing of 30um and 35um. As a result of the basic experiment, it was confirmed that the fine pattern shape had an aspect ratio of 1:1 when the pitch interval was 35um and 20 iterations. Through the determined processing conditions, a hydrophobic pattern was implemented on the core surface of KP4. A specimen with a hydrophobic pattern was produced through injection molding. The height of the molded hydrophobic pattern is 20 ㎛ less than the depth of the core and the contact angle measurement results are 92.1°. This is a contact angle smaller than the superhydrophobic criterion. Molding analysis was performed to analyze the cause of this, and it was analyzed that the molding was not molded due to the lack of pressure in the injection machine.

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma (미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과)

  • Nam, Jehyun;Kim, Eunkyung;Kim, Jinyoung;Jeong, Dawoom;Kim, Donguk;Kwak, Bomi;Kim, Sang-Woo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.

Ultrasonic Bonding of Au Stud Flip Chip Bump on Flexible Printed Circuit Board (연성인쇄회로기판 상에 Au 스터드 플립칩 범프의 초음파 접합)

  • Koo, Ja-Myeong;Kim, Yu-Na;Lee, Jong-Bum;Kim, Jong-Woong;Ha, Sang-Su;Won, Sung-Ho;Suh, Su-Jeong;Shin, Mi-Seon;Cheon, Pyoung-Woo;Lee, Jong-Jin;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.79-85
    • /
    • 2007
  • This study was focused on the feasibility of ultrasonic bonding of Au stud flip chip bumps on the flexible printed circuit board (FPCB) with three different surface finishes: organic solderability preservative (OSP), electroplated Au and electroless Ni/immersion Au (ENIG). The Au stud flip chip bumps were successfully bonded to the bonding pads of the FPCBs, irrespective of surface finish. The bonding time strongly affected the joint integrity. The shear force increased with increasing bonding time, but the 'bridge' problem between bumps occurred at a bonding time over 2 s. The optimum condition was the ultrasonic bonding on the OSP-finished FPCB for 0.5 s.

  • PDF

A Study on the Thermo-Mechanical Stress of MEMS Device Packages (마이크로 머신(MEMS) 소자 패키지의 열응력에 대한 연구)

  • Jeon, U-Seok;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.744-750
    • /
    • 1998
  • Unlike common device, MEMS(micro-electro-mechanical system) device consists of very small mechanical structures which determine the performance of the device. Because of its small mechanical structure inside. MEMS device is very sensitive to thermal stress caused by CTE(coefficient of thermal expansion) mismatch between its components. Therefore, its characteristics are affected by material properties. process temperature. and dimensions of each layer such as chip, adhesive and substrate. In this study. we investigated the change of the thermal stress in the chip attached to a substrate. With computer-aided finite element method (FEM), the computer simulation of the thermal stress was conducted on variables such as bonding material, process temperature, bonding layer thickness and die size. The commercial simulation program, ABAQUS ver5.6, was used. Subsequently 3-layer test samples were fabricated, and their degree of bending were measured by 3-D coordinate measuring machine. The experimental results were in good agreement with the simulation results. This study shows that the bonding layer could be the source of stress or act as the buffer layer for stress according to its elastic modulus and CTE. Solder adhesive layer was the source of stress due to its high elastic modulus, therefore high compressive stress was developed in the chip. And the maximum tensile stress was developed in the adhesive layer. On the other hand, polymer adhesive layer with low elastic modulus acted as buffer layer, and resulted in lower compressive stress. The maximum tensile stress was developed in the substrate.

  • PDF