• 제목/요약/키워드: Micro crack

검색결과 505건 처리시간 0.034초

유한요소법에 의한 결함 주위의 응력분포와 피로크랙의 간섭효과 (Analysis of the stress disribution around flaws and the interaction effects between fatigue cracks by finite element method)

  • 송삼홍;김진봉
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.154-161
    • /
    • 1995
  • In order to analysis of the stress distribution around flaws and the interaction effects between fatigue cracks, stress around micro hole was analyzed by Finite Element Method(F.E.M.) and micro hole specimens were tested using rotary bending fatigue machine and twisting fatigue machine to identify stress effects for fatigue cracks initiating from micro holes and interaction effects between micro holes. The results are as follows : Interaction effects of .sigma. $_{y}$for the micro hole side is larger than the large micro hole side when the interval between micro holes is near. Stress concentration factor increase as the diameter of micro hole becomes smaller. But, stress field of micro hole is smaller than that of large micro hole at h .leq. r (h:depth of micro hole, r:radius of micro hole) and that of large hole is larger than that of small micro hole at h >r expect the small range from micro hole.e.

  • PDF

마찰교반용접된 7075-T651 알루미늄 판재의 피로균열전파의 거시적 및 미시적 관찰 (Marco and Microscopic Observations of Fatigue Crack Growth in Friction Stir Welded 7075-T651 Aluminum Alloy Plates)

  • 공유식;김선진
    • 동력기계공학회지
    • /
    • 제18권2호
    • /
    • pp.62-69
    • /
    • 2014
  • In this paper, in order to investigate the effects of marco and microscopic observations of fatigue crack growth in friction stir welded (FSWed) 7075-T651 aluminum alloy plates, fatigue crack growth tests were performed under constant amplitude loading condition at room temperature with three different pre-cack locations, namely base metal (BM-CL) and two kinds of pre-crack locations in welded joints, weld metal (WM-CL) and heat affected zone (HAZ-CL) specimens. The fatigue crack growth behavior of FSWed 7075-T651 aluminum alloy plates were discussed based on the marco and microscopic fractographic observations. The marcoscopic aspects of surface crack growth path for BM-CL and HAZ-CL specimens indicate relatively straight lines, however, the crack growth paths of WM-CL specimens grow first straight and by followed toward the TMAZ and HAZ. The microscopic aspects of fatigue fracture for BM-CL and HAZ-CL specimens indicate typical fatigue striation, but WM-CL showed intergranular fracture pattern by micro structural changes of FSW process.

압연강판(壓延鋼板)의 피로균열(被虜龜裂) 전파거동(傳播擧動)에 대(對)한 연구(硏究) (A Study on the Propagation Behaviour of the Fatigue Cracks in Rolled Steel Plates)

  • 강창수
    • 대한조선학회지
    • /
    • 제12권2호
    • /
    • pp.43-58
    • /
    • 1975
  • There are many reports on fatigue crack of metallic materials but most of them relate crack propagation rate to stress intensity factor. The problem of crack propagation is not yet clarified, especially the bridge between micro and macro phenomena In this experiment rotating bending fatigue tests have been carried out with smoothed specimen of rolled steel plates including 0.2% carbon under application of three stress conditions to investigate the slip band and the crack propagation behaviour. The results obtained are as follows; 1) The length of cracks which have grown at initial crack tips can be expressed as follows; $l=Ae^{BNr}$(A,B: constant, $N_r$: cycle ratio) $\frac{dl}{dN}=\frac{AB}{N_f}{\cdot}e^{BNr}$($N_f$:fatigue life) 2) The ratio of slipped grain number to total grain number is $S_f=7{\sigma}-5.6$-5.6{\sigma}_c$($\sigma$: stress amplitude) (${\sigma}_c$: fatigue limit) 3) When the fatigue process transfers from Stage I to Stage II, the crack which propagates into specimen changes its direction from that of the maximum shear stress to the direction of perpendicular to principal stress and this is same in the circumferential direction of specimen. the crack propagation behaviors of both sides of a crack are different each other when they approach to the grain boundary.

  • PDF

Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구 (Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

미소결함간의 응력의 간섭과 응력장 해석 (A Study of Stress Analysis and Interaction of Stress between Micro Flaws and Inclusions)

  • 송삼홍;김진봉
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1259-1268
    • /
    • 1995
  • The stress distribution around micro holes and the behavior of stress interaction between micro holes are considerd in the study. Several conclusions are extracted as follows : (1) The stress interaction varies with the distance e between micro holes. When the two micro holes are spaced in such a manner that theri two closest points are separated by a distance of micro hole radius (e=1), stress distribution is affected by a opposite micro hole in all the closest region. In addition, if two closest points are seperated by twice the distance of a micro hole radius (e=2), stress distribution is affected by a opposite micro hole in the region of -0.8.leq.x/r.leq.0.8 and the interaction effect can be neglected for e=4. (2)If the depth becomes larger than the radius, or the radius varies, the shape and magnitude of stress distribution around micro holes varies. (3) Hoop stress around a micro hole for the two dimensional configuration is larger than that of the three dimensional micro hole located on the surface of material for .theta. < 60.deg., but it is reversed for .theta > 60.deg.

초음파 가공에 의한 미세 에어홀 가공 기술 (Micro-machining of Glass Air Hole using Ultrasonic Machining)

  • 김병희;전성건;남권선;김헌영;전병희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.48-52
    • /
    • 2004
  • Ultrasonic machining is effective for machining of extreme hard and brittle materials, including glass, ceramic, carbide, graphite. The major machining principle involves the direct hammering as well as the impact of abrasive panicles on the workpiece. Also, it involve cavitation erosion. The general workpiece is flat side. This study attempted micro hole machining of a curved surface of glass tube. Ultrasonic machining is fault of the slow machining speed. An experiment does and got 16 seconds validity machining time as increasing the processing speed. Moreover, entrance crack and surface roughness was similar both machining speed is slow and fast. Several micro hole of glass tube machined using one micro tool, but tool wear is infinitesimal.

  • PDF

마이크로 R2R 성형에서 주름의 발생 예측과 개선 (Prediction of Wrinkling in Micro R2R Forming and Its Improvement)

  • 민병욱;서원상;김종봉;이혜진;이상훈;김종호
    • 소성∙가공
    • /
    • 제20권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Recently, with the merits of simplicity, ease of mass production and cost effectiveness, a roll-to-roll (R2R) forming process is tried to be employed in the manufacturing of the circuit board, barrier ribs and other electronic device. In this study, the roll-to-roll process for the forming of micro-pattern in electronic device panel is designed and analyzed. In the preliminary experiments, two major defects, i.e., crack near the dimple wall and wrinkling on outside region of dimple, are found. The study on the crack prevention is carried out in previous works by authors. In this study, the cause of wrinkling and modification of tooling to prevent the wrinkling is studied. The main cause of wrinkling is considered to be the uneven material flow along the rolling direction. To reduce or to retard the wrinkling initiation, a dummy shape on outside the pattern is introduced. From the finite element analysis results, it is shown that the dummy shape can reduce the uneven material flow significantly. Finally the effect of dimensions of the dummy shape on material flow is investigated and the optimum dimensions are found.

MFC 센서를 이용한 응력 확대 계수 측정에 관한 연구 (A Study of Stress Intensity Factors using Micro Fiber Composite Sensors)

  • 오동진;김명현
    • Journal of Welding and Joining
    • /
    • 제29권3호
    • /
    • pp.76-81
    • /
    • 2011
  • Recently, the structural failures due to fatigue occur frequently with the increase of size of ships and offshore structures. In this respect, the assessment of fatigue life and the residual strength are very important. Currently, the smart materials technology has demonstrated a variety of possibilities for a diagnosis of structural strength and structural health condition for large structures. The benefits and feature of the MFC sensor are more flexible, durable and reliable than conventional smart material. In this study, Micro Fiber Composite (MFC) sensor for the measurement of stress intensity factor (SIF) of two dimensional cracks induced in a structure is developed. Two MFC sensors are placed in the vicinity of the crack tip close to each other with the crack tip in between them. The SIFs of Mode I($K_I$) as well as of Mode II($K_{II}$) based on the piezoelectric constitutive law and fracture mechanics are calculated. In this study, the SIF values measured by MFC sensors are compared with the theoretical results and measured value.

PV모듈의 cell crack 방지를 위한 EVA Sheet의 최적 Gel content 특성 (The Optimimum Gel Content Characteristics for Cell Cracks Prevention in PV Module)

  • 강경찬;강기환;김경수;허창수;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1108-1109
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. Solar cell's micro cracks are increasing the breakage risk over the whole value chain from the wafer to the finished module, because the wafer or cell is exposed to tensile stress during handling and processing. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Evaluation of mechanical properties for high strength and ultrahigh strength concretes

  • Murthy, A. Ramachandra;Iyer, Nagesh R.;Prasad, B.K. Raghu
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.341-358
    • /
    • 2013
  • Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.