• 제목/요약/키워드: Micro cement

검색결과 323건 처리시간 0.023초

후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성 (Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate)

  • 손민재;김규용;이상규;김홍섭;남정수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권3호
    • /
    • pp.31-39
    • /
    • 2021
  • 본 연구에서는 후크형 강섬유(HSF)와 스무스형 섬유(SSF)의 혼합 비율과 변형속도가 하이브리드 섬유보강 시멘트복합체의 인장 특성 시너지 효과에 미치는 영향을 평가하기 위하여, HSF와 SSF를 각각 1.5+0.5, 1.0+1.0, 0.5+1.0vol.%의 혼합 비율로 혼입한 하이브리드 섬유보강 시멘트복합체를 제작하였다. 실험 결과, HSF를 보강한 시멘트복합체(HSF2.0)은 변형속도가 증가함에 따라 섬유 주변 매트릭스에 발생하는 마이크로 균열의 증가에 의해 직선형으로 인발되는 섬유의 수가 감소하고, 인장강도 점 이후 응력 저하가 급격하게 발생하였다. SSF가 0.5vol.% 혼입되는 경우, 준정적에서 마이크로 균열을 효과적으로 제어하지만, 고속에서는 마이크로 균열 제어 및 후크형 강섬유의 인발저항성능 향상에 효과적이지 않은 것으로 확인되었다. 반면, HSF 1.0vol.%와 SSF 1.0vol.%를 혼입한 시험체(HSF1.0SSF1.0)은 마이크로 및 매크로 균열에 대해 각각의 섬유가 효과적으로 제어하고, SSF가 HSF의 인발저항성능을 향상시킴으로써 고속에서 변형능력 및 에너지 흡수 능력에 대한 섬유 혼합 효과가 크게 증가하였으며, 인장강도, 변형능력 및 피크인성의 변형속도 민감도가 가장 높은 것으로 나타났다. 반면, SSF 1.5vol.%의 혼입은 매트릭스 내의 섬유 혼입 개체 수를 증가시키고, HSF의 인발저항성능을 향상시켜 가장 높은 인장강도 및 연화인성 시너지 효과를 나타내었지만, 매크로 균열을 제어하는 HSF의 혼입률이 0.5vol.%로 낮아 변형능력 및 피크인성 시너지에는 효과적이지 않은 것으로 확인되었다.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • 제6권2호
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

3D micro-CT analysis of void formations and push-out bonding strength of resin cements used for fiber post cementation

  • Uzun, Ismail Hakki;Malkoc, Meral Arslan;Keles, Ali;Ogreten, Ayse Tuba
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권2호
    • /
    • pp.101-109
    • /
    • 2016
  • PURPOSE. To investigate the void parameters within the resin cements used for fiber post cementation by micro-CT (${\mu}CT$) and regional push-out bonding strength. MATERIALS AND METHODS. Twenty-one, single and round shaped roots were enlarged with a low-speed drill following by endodontic treatment. The roots were divided into three groups (n=7) and fiber posts were cemented with Maxcem Elite, Multilink N and Superbond C&B resin cements. Specimens were scanned using ${\mu}CT$ scanner at resolution of $13.7{\mu}m$. The number, area, and volume of voids between dentin and post were evaluated. A method of analysis based on the post segmentation was used, and coronal, middle and apical thirds considered separately. After the ${\mu}CT$ analysis, roots were embedded in epoxy resin and sectioned into 2 mm thick slices (63 sections in total). Push-out testing was performed with universal testing device at 0.5 mm/min cross-head speed. Data were analyzed with Kruskal-Wallis and Mann-Whitney U tests (${\alpha}=.05$). RESULTS. Overall, significant differences between the resin cements and the post level were observed in the void number, area, and volume (P<.05). Super-Bond C&B showed the most void formation ($44.86{\pm}22.71$). Multilink N showed the least void surface ($3.51{\pm}2.24mm^2$) and volume ($0.01{\pm}0.01mm^3$). Regional push-out bond strength of the cements was not different (P>.05). CONCLUSION. ${\mu}CT$ proved to be a powerful non-destructive 3D analysis tool for visualizing the void parameters. Multilink N had the lowest void parameters. When efficiency of all cements was evaluated, direct relationship between the post region and push-out bonding strength was not observed.

Influence of nano-silica on the failure mechanism of concrete specimens

  • Nazerigivi, Amin;Nejati, Hamid Reza;Ghazvinian, Abdolhadi;Najigivi, Alireza
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.429-434
    • /
    • 2017
  • Failure of basic structures material is usually accompanied by expansion of interior cracks due to stress concentration at the cracks tip. This phenomenon shows the importance of examination of the failure behavior of concrete structures. To this end, 4 types of mortar samples with different amounts of nano-silica (0%, 0.5%, 1%, and 1.5%) were made to prepare twelve $50{\times}50{\times}50mm$ cubic samples. The goal of this study was to describe the failure and micro-crack growth behavior of the cement mortars in presence of nano-silica particles and control mortars during different curing days. Failure of mortar samples under compressive strength were sensed with acoustic emission technique (AET) at different curing days. It was concluded that the addition of nano-silica particles could modify failure and micro-crack growth behavior of mortar samples. Also, monitoring of acoustic emission parameters exposed differences in failure behavior due to the addition of the nanoparticles. Mortar samples of nano-silica particles revealed stronger shear mode characteristics than those without nanoparticles, which revealed high acoustic activity due to heterogeneous matrix. It is worth mentioning that the highest compressive strength for 3 and 7 test ages obtained from samples with the addition of 1.5% nano-silica particles. On the other hand maximum compressive strength of 28 curing days obtained from samples with 1% combination of nano-silica particles.

Early Age Properties of HPC Columns under Construction-Site Conditions

  • Yun, Ying-Wei;Jang, Il-Young
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권1호
    • /
    • pp.63-68
    • /
    • 2008
  • High performance concrete (HPC) is widely used in civil engineering due to its high durability and low permeability etc. Compared with ordinary concrete, HPC may develop much higher AS (autogenous shrinkage) at early age due to the relative low water cement (w/c) ratio and adding of mineral admixtures, which is one of the main reasons for early age micro-cracking of HPC structures. This paper studies the early age property of HPC columns under similar construction-site surroundings by embedded strain transducers. Results show that for HPC structure, early-age autogenous shrinkage especially within the first day after concrete pouring is pretty large. AS within the first day are 60% larger than those for 14 days in this research for all specimens. Therefore it should be taken into account for structure durability. By comparison of PHPC (plain HPC column) and RHPC (reinforced HPC column) specimens, the effects of reinforced bars on AS and temperature distribution have been analyzed. Also the influence of w/c ratio on AS is demonstrated.

지하구조물을 위한 수밀콘크리트의 개발 및 실용화 (Development and Application of Low Permeable Concrete for Underground Structures)

  • 백상현;박성수;박종유;백원준;엄태선;최롱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.259-262
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, was compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and field test of low permeable concrete using fly ash were performed. From this study, fly ash concrete can control the penetration of water and chloride ion effectively by forming dense micro-structure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

균열을 갖는 초기재령 콘크리트의 염화물 침투 해석 (Chloride-Penetration Analysis in Cracked Early-Age Concrete)

  • 송하원;박상순;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.635-640
    • /
    • 2001
  • In this study, a mathematical model is established for prediction of chloride penetration in unsaturated cracked early-age concrete. The model is combined with models for thermo-hygro dynamic coupling of cement hydration, moisture transport and micro-structure development. Chloride permeability and water permeability at cracked early-age concrete specimens are evaluated using a rapid chloride permeability test and a low-pressure water permeability test, respectively. Then, a homogenization technique is introduced into the model to determine equivalent diffusion coefficient and equivalent Permeation coefficient. Increased chloride transport due to cracks at the specimen could be predicted fairly well by characterizing the cracks using proposed model. Proposed model is verified by comparing diffusion analysis results with test results.

  • PDF

상압증기양생방식에 의한 PHC PILE의 제조기술 연구 (An Experimental Study on Manufactural Technics of PHC Pile Using Low Pressure Steam Curing Method)

  • 김종흡;안상기;이동근;심흥섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.405-414
    • /
    • 1994
  • The High Strength Concrete REsearch Team of the Dong-Ah Construction R&D Institute has achieved the preactical use of the PHC pile manufacture technique at the Dong-Ah Chang-dong PC Plant. Components of the high strength concrete are used high strength cement, admixtures(water reducing high range admixture, micro silion fume, fly ash, gypsum). The design strength required 800kg/$\textrm{cm}^2$ was developed raging from 870kg/$\textrm{cm}^2$ to 1010kg/$\textrm{cm}^2$. The new manufacture procedure of HPC pile which include placing, molding, steam curing is able to apply a current PC pile manufacture procedure easily without using the high pressure steam curing.

  • PDF

Prediction models for compressive strength of concrete with Alkali-activated binders

  • Kar, Arkamitra;Ray, Indrajit;Unnikrishnan, Avinash;Halabe, Udaya B.
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.523-539
    • /
    • 2016
  • Alkali-activated binder (AAB) is increasingly being considered as an eco-friendly and sustainable alternative to portland cement (PC). The present study evaluates 30 different AAB mixtures containing fly ash and/or slag activated by sodium hydroxide and sodium silicate by correlating their properties from micro to specimen level using regression. A model is developed to predict compressive strength of AAB as a function of volume fractions of microstructural phases (physicochemical properties) and ultrasonic pulse velocity (elastic properties and density). The predicted models are ranked and then compared with the experimental data. The correlations were found to be quite reasonable (R2 = 0.89) for all the mixtures tested and can be used to estimate the compressive strengths for similar AAB mixtures.

섬유종류에 따른 고인성 시멘트 복합체의 음향방출특성 (Effect of Fiber on the Acoustic Emission of High Performance Fiber-Reinforced Cement Composite)

  • 김윤수;전에스더;김선우;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.342-345
    • /
    • 2006
  • The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of HPFRCC(High performance fiber-reinforced cementitious composite). Acoustic emission(AE) method was used to evaluate the characteristics of fracture process and the micro-failure mechanism of HPFRCC. For these purposes, three kinds of fibers were used : PP(Polypropylene), PE(Polyethylene), SC(Steel cord). In this study, the AE characteristics of HPFRCC with different fiber type(PE.15, PP2.0, SC0.75+PE0.75) distributions under four-point-bending were studied. The result show that the AE technique is a valuable tool to study the failure mechanism of HPFRCC.

  • PDF