• Title/Summary/Keyword: Micro Steam Turbine Generation

Search Result 5, Processing Time 0.022 seconds

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

Performance Analysis of Bio-gas Micro Gas Turbine System (바이오가스 마이크로 가스터빈 성능해석)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Gyu;Kim, Jae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.239-242
    • /
    • 2008
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. In this context, the Micro Gas Turbines (MGT) by using Bio-gas is being considered as a promising solution. In order to propose a feasible concept of those technologies such as improving environmental effect and economics, we performed a sensitivity study for a biomass fueled MGT using a simulation model. The study consists of 1) the fundamental modeling using manufacturer's technical specifications, 2) the correction with the experimental data, and 3) the prediction of off-design characteristics. The performance analysis model was developed by PEPSE-GT 72, commercial steam/gas turbine simulation technicque.

  • PDF

Basic Study on the IoT Micro Boiler (IoT 마이크로 보일러에 대한 기초 연구)

  • Jang, Sung-Cheol
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • The product to be developed in this study is a heat recovery device which generates steam or hot water at high temperature and high pressure by heating water using exhaust gas from diesel engine, gas engine, gas turbine, etc. as an exhaust gas boiler off heat boiler(EGB) type for ship and power generation. The steam vapor or the created warm water is used as the power source required for the steerage heating and hot water facility or the HFO heating of the ship, and the turbine drive. The principle of waste heat boilers serves to heat water as high temperature exhaust gas with heat pass through the tube of the boiler. The heated water is a structure that is sent to a cabin or turbine device in the form of steam. In this study, the objective of this study is to maximize the efficiency by increasing the heat transfer surface by replacing the tube which is the heat transfer part of EGB with the plate tube.

Water Treatment of Low Pressure Steam turbine Generation on Small MSW Incinerationp Plant (중소형폐기물소각설비의 발전용 용수처리에 관한 연구)

  • Jeon, Kuem-Ha;Ha, Choon-Rai;Kim, Nack-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.836-839
    • /
    • 2009
  • 중소형 폐기물소각설비의 저압 저질의 포화증기를 이용한 폐열발전용 용수처리에 관한 연구를 수행 하였다. 기존 소각설비에 적용된 강산성 이온교환수지형 연수기에 역삼투압 멤브레인 처리와 강염기성 이온교환수지형 용수처리를 연결하여 보일러 용수를 처리한 결과, KS B6209의 30 $kg/cm_2$ 증기 압력의 보일러 용수기준에는 적합하였고, 증기의 비체적으로 증기 농도로 환산하면. 역삼투압법처리에 의한 방법보다는 강염기성이온교환수지형 용수처리를 연계 처리한 결과가 중소형폐기물소각설비의 저압증기터빈발전에 보다 적합한 것으로 나타났다.

  • PDF

PutStudy of Power Generation and Condensation Efficiency on MSTG of MSW Incineration Plant (폐기물소각설비 중 MSTG설비의 발전 및 응축효율에 관한 연구)

  • Jeon, Kuemha;Jeon, Kwangsik;Ha, Choongrai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.208.1-208.1
    • /
    • 2010
  • 일일 50톤 처리용량의 도시고형폐기물소각설비의 폐열 보일러에서 생산되는 4.0~6.5 bar의 저압증기를 이용하여 전력을 생산하는 축류식 MSTG설비에 있어서 공급증기압력, 입출구의 압력차이에 의한 발전효율을 비교하고, 저압의 증기의 균질화를 위한 기술분리, 정압유지설비 및 증기터빈의 본체의 기수분리된 증기의 응축효율을 증기공급율, 발전효율별로 비교분석하였다. 공급되는 증기의 압력, 증기터빈의 입출구 압력 차이가 높아짐에 따라, 증기의 응축효율이 증가를 하였으며, 배출되는 증기량에 따른 발전효율의 증가는 없었다. 따라서, 가변적으로 변하는 저압의 증기를 기수분리 및 정압을 유지하여도 증기질의 변동이 없으며 그에 따른 증기의 엔탈피 변화가 없으므로 발전 효율의 향상을 기대하기는 어려웠다.

  • PDF