• 제목/요약/키워드: Micro Robot

검색결과 184건 처리시간 0.037초

Research of soccer robot system strategies

  • Bae, Jong-Il;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.149.4-149
    • /
    • 2001
  • In this paper, the multiple micro robot soccer playing system is introduced at first. Learning and evolving in artificial agents is a difficult problem, but on the other hand a challenging task. In our laboratory, this soccer studies mainly centered on single agent learning problem. The construction of such experimental system has involved lots of kinds of challenges such as robot designing, vision processing, motion controlling. At last we will give some results showing that the proposed approach is feasible to guide the design of common agents system.

  • PDF

이동 로보트 경로상의 장애물 검지를 위한 SRF (Sonic Range Finder) Array에 관한 연구 (A study on the SRF array to detect the obstacles of the mobile robot's path)

  • 윤영배;이상민;홍승홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.87-90
    • /
    • 1987
  • This paper gives the Sonic Range Finder(SRF) Array which detects the unknown obstacles on the mobile robot's path. This SRF Array gives mobile robot's circumstance information wider, processes and transfers them to the locomotion module to construct the modify path. In this system, 8 pairs of the 40 KHz ultrasonic sensors constitute the SRF Array, including a pair of reference sensors to correct the errors, 4051 analog multiplexer and demultiplexer swtch the sensor with time and 8031-on chip micro computer controls processes the data and communication the others.

  • PDF

Development of the remote control system for Internet-based mobile robot using Embedded Linux and Qt

  • Park, Tae-Gyu;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.622-627
    • /
    • 2003
  • The existing remote control system have some inherent disadvantage of direct control in the limit range. In some special cases, for example, a power apparatus, an unmanned factory, a nuclear factory, a security management system, the tele-operation is needed to control remote robot without limit space. This field is based on the Internet communication. Because the Internet is constructed all over the world. And it is possible that we control remote mobile robot in the long distance. In this paper, we developed a remote control system. This system is divided into two primary parts. These are local site and remote site. There are the moving robot and web server in the remote site and there is the robot control device in local site. The moving robot is moved by two stepper motors and the robot control device consists of SA-1100 micro controller and embedded Linux. And this controller is an embedded system. Public personal computer which is connected the Internet is used for the web server. The web server provides the mobile robot control interface program to the remote controller and captures the image for feedback information. In the whole system, a robot control device is connected with moving robot and web server through the Internet. So the operator can control the moving robot in the distance through the Internet.

  • PDF

복잡한 지형에서 변형 가능한 6족 로봇의 구현 (Implementation of a Transformable Hexapod Robot for Complex Terrains)

  • 유영국;공정식;김진걸
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.65-74
    • /
    • 2008
  • This paper deals with the path creation for stable action of a robot and transformation by using the fuzzy algorithm. Also, the obstacle detection and environmental analysis are performed by a stereo vision device. The robot decides the range and the height using the fuzzy algorithm. Therefore the robot can be adapted in topography through a transformation by itself. In this paper, the robot is designed to have two advantages. One is the fast movability in flat topography with the use of wheels. The other is the moving capability in uneven ground by walking. It has six leg forms for a stable walk. The wheels are fixed on the legs of the robot, so that various driving is possible. The height and the width of robot can be changed variously using four joints of each leg. The wheeled joint has extra DOF for a rotation of vertical axis. So the robot is able to rotate through 360 degrees. The robot has various sensors for checking the own state. The stable action of a robot is achieved by using sensors. We verified the result of research through an experiment.

TOP-1 로보트의 Inverse Jacobian의 해 (A study on the solution of inverse jacobian for TOP-1)

  • 우상래;이재섭;김형래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.304-309
    • /
    • 1986
  • This paper is about the Inverse Jacobian for the TOP-1 robot. The robot Jacobian is used for the movement in accordance with differental changes. A Matrix and Homogeneous Transformation Matrix, Differential Motion Vector D are applied to Jacobian equation for the movement of the robot in accordance with the minut changes. The solution of Jacobian equation is acquired and applied for the subtle movement of each arms of the robot. The interface with APPLE-II Micro-computer is searched out too. The Software and the interface resulted from this paper are considered to be higly useful in the accurate control on the robot when they are linked with dynamics of robot.

  • PDF

감시용 동축로터 비행로봇의 개발 (Development of a Coaxial Rotor Flying Robot for Observation)

  • 강민성;신진옥;박상덕;황세희;조국;김덕후;지상기
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Integrated Human and Rob-ot Ergonomics의 측면에서 로보트의 동작제어 개선에 관한 연구 (A study on the improvement of the robot motion control as a part of the integrated human and robot ergonomics)

  • 이순요;권규식;홍승권
    • 대한인간공학회지
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 1990
  • Teaching Expert System/World Coordinate System(TES/WDS) was proposed to improve robot motion control. First, precise coordinate reading for getting the inherent data about position and posture of task objects was performed throgh the integrated image and fuzzy processing. Second, singularity and parameter limitation problems in getting the motion data about position and posture of robot in macro motion were solved by proposed geometric algorithm. Third, the unnecessary robot motion was also removed by the Robot Time and Motion (RTM) method and the Multi-Geometric Straight-Line Motion (MGSLM) method in micro motion. This results demonstrated reduction of the average teaching task time according to task order.

  • PDF

초소형 동력 장치 (MEMS Power Device)

  • 권세진
    • 한국추진공학회지
    • /
    • 제12권1호
    • /
    • pp.64-70
    • /
    • 2008
  • 마이크로 가공기술의 눈부신 발달에 힘입어 다양한 항공우주 시스템을 초소형화 하려는 시도가 있어 왔다. 마이크로 비행체, 나노 위성, 마이크로 로봇 등의 개념들이 등장하였다. 이들 독립 이동식 마이크로 시스템을 구동하는 데에는 기존의 배터리 보다 훨씬 에너지 밀도가 높은 동력원이 필요하다. 그러나 이와 같은 고에너지 동력원이 아직 존재하지 않는다. 이 논문에서는 초소형 동력원 연구의 과거와 현재를 살펴보고, 미래 발전 방향에 대한 제안을 시도하였다.