• Title/Summary/Keyword: Micro Robot

Search Result 184, Processing Time 0.029 seconds

A Study on the Localization using Passive RFID and Sonar for Mobile Robot In Indoor environment (실내 환경에서 RFID와 초음파를 이용한 이동로봇의 위치 추정에 관한 연구)

  • Jung, Ki-Ho;Jang, Chul-Woong;Kang, Shin-Hyuk;Lee, Dong-Kwang;Yeon, Mun-Jin;Jang, Mun-Suck;Kong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.331-332
    • /
    • 2007
  • In this paper we analyze whether recent Radio Frequence Identification technology can be used to improve the localization of mobile robot in their environment. This system make use of power control because Tag with Reader distance measurement. We are accurately the low at former time than the environment. A distance measurement is rather correct. This system used 900MHz Frequencies.

  • PDF

Miniature Jumping Robot Using SMA Coil Actuators and Composite Materials (형상기억합금 코일 구동기와 복합재를 이용한 소형 도약 로봇 설계 및 제작)

  • Jung, Sun-Pill;Koh, Je-Sung;Jung, Gwang-Pil;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.2
    • /
    • pp.136-142
    • /
    • 2013
  • In nature, many small insects are using jumping as a survival strategy. Among them, fleas jump in a unique method. They use an elastomer, 'Resilin', an extensor muscle and a trigger muscle. By contracting the extensor muscle, the elastic energy, that makes a flea to jump, is stored in the resilin. After storing energy, the trigger muscle begins contracting and pulling the extensor muscle. When the extensor muscle crosses the rotational joint, direction of torque generated from the extensor muscle reverses, 'torque reversal mechanism'. Simultaneously, the elastic energy stored in the resilin releases rapidly and is converted into the kinetic energy. It makes a flea to jump 150 times its body length. In this paper, miniaturized jumping robot using flea-inspired catapult mechanism is presented. This mechanism is based on the 4-bar linkage and the reversal joint and is actuated by Shape Memory Alloy (SMA) coiled springs describing the flea's muscle. The robot prototype is fabricated by SCM process using glass fiber prepregs and a sheet of polyimide film. The prototype is 20mm link length, 34mm width and 2.0g weight and can jump 103cm.

Effects of Robot Assisted Gait Training Combined Virtual Reality on Balance and Respiratory Function in Chronic Stroke Patients (가상현실을 접목한 로봇보행훈련이 만성 뇌졸중 환자의 균형과 호흡기능에 미치는 영향)

  • Wook Hwang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • Purpose : This study was performed to evaluate the effects of virtual reality combined robot assist gait training (VRG) on improvement of balance and respiratory function in chronic stroke patients. Methods : A single-blind, randomized controlled trial (RCT) was conducted with 35 chronic stroke patients. They were randomly allocated 2 groups; VRG group (n=18) and conservative treatment group (CG; n=17). The VRG group received 30 minutes robot assisted gait training combined virtual reality training, robot assisted gait training was conducted in parallel using a virtual reality device (2 sessions of 15 minutes in a 3D-recorded walking environment and 15 minutes in a downtown walking environment). In the conservative treatment group, neurodevelopmental therapy and exercise therapy were performed according to the function of stroke patients. Each group performed 30 minutes a day 3 times a week for 8 weeks. The primary outcome balance and respiratory function were measured by a balance measurement system (BioRescue, Marseille, France), Berg balance scale, functional reach test for balance, Spirometry (Cosmed Micro Quark, Cosmed, Italy) for respiratory function Forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), and maximum expiratory volume (PEF) were measured according to the protocol. The measurement were performed before and after the 8 weeks intervention period. Results : Both groups demonstrated significant improvement of outcome in balance and respiratory function during intervention period. VRG revealed significant differences in balance and respiratory function as compared to the CG groups (p<.05). Our results showed that VRG was more effective on balance and respiratory function in patients with chronic stroke. Conclusion : Our findings indicate that VRG can improve balance and respiratory function, highlight the benefits of VRG. This study will be able to be used as an intervention data for recovering balance and respiratory function in chronic stroke patients.

Hybrid Facial Representations for Emotion Recognition

  • Yun, Woo-Han;Kim, DoHyung;Park, Chankyu;Kim, Jaehong
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1021-1028
    • /
    • 2013
  • Automatic facial expression recognition is a widely studied problem in computer vision and human-robot interaction. There has been a range of studies for representing facial descriptors for facial expression recognition. Some prominent descriptors were presented in the first facial expression recognition and analysis challenge (FERA2011). In that competition, the Local Gabor Binary Pattern Histogram Sequence descriptor showed the most powerful description capability. In this paper, we introduce hybrid facial representations for facial expression recognition, which have more powerful description capability with lower dimensionality. Our descriptors consist of a block-based descriptor and a pixel-based descriptor. The block-based descriptor represents the micro-orientation and micro-geometric structure information. The pixel-based descriptor represents texture information. We validate our descriptors on two public databases, and the results show that our descriptors perform well with a relatively low dimensionality.

Speeding-up for error back-propagation algorithm using micro-genetic algorithms (미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

Unmanned Surface Vehicle for Collecting Marine Debris (쓰레기 수거용 무인 수상로봇)

  • Oh, Myung Hoon;Kim, Jea Heung;Kim, Hyeon Min;Shin, Dong A;Kim, Dong Hun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.61-62
    • /
    • 2015
  • This study presents a movable USV (Unmanned Surface Vehicle) based on Micro Controller. Recently, Micro Controller has widely used in application programming such as industry and education application. In particular, Robot is capable of collecting Marine Debris in any sea area is needed so We propose USV used IP camera for automatic driving, distance detection to control movement of USV in order to prevent of collision based on Arduino. Also, Surrounding situation taken by IP camera can be transmitted to monitor and smartphone.

  • PDF

3-DOF Parallel Micromanipulator : Design Consideration (3차원 평형 마이크로조정장치 : 설계 고려사항)

  • Lee, Jeong-Ick;Lee, Dong-Chan;Han, Chang-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • For the accuracy correction of the micro-positioning industrial robot, micro-manipulator has been devised. The compliant mechanisms using piezoelectric actuators is necessary geometrically and structurally to be developed by the optimization approaches. The overall geometric advantage as the mechanical efficiencies of the mechanism are considered as objective functions, which respectively art the ratio of output displacement to input force, and their constraints are the vertical notion of supporting leg and the structural strength of manipulation. In optimizing the compliant mechanical amplifier, the sequential linear programming and an optimality criteria method are used for the geometrical dimensions of compliant bridges and flexure hinges. This paper presents the integrated design process which not only can maximize the mechanism feasibilities but also can ensure the positioning accuracy and sufficient workspace. Experiment and simulation are presented for validating the design process through the comparisons of the kinematical and structural performances.

Micro Hole Machining by EDM Using Insulated Tool Combined with Ultrasonic Vibration of Dielectric Fluid (가공액의 초음파 진동 및 절연 공구를 이용한 미세방전가공)

  • Park, Min-Soo;Chung, Do-Kwan;Lee, Kang-Hee;Chu, Chong-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.180-186
    • /
    • 2011
  • This paper describes a micro electrical discharge machining (MEDM) technique that uses an insulated tool in combination with ultrasonic vibration to drill micro holes. As the machining depth becomes deeper, the dispersion of debris and circulation of the dielectric fluid are difficult to occur. Consequently, machining becomes unstable in the machining region and unnecessary electrochemical dissolution and secondary discharge sparking occur at the tool side face. To reduce the amount of unnecessary side machining, an insulated tool was used. Ultrasonic vibration was applied to the MEDM work fluid to better remove debris. Through these methods, a $1000\;{\mu}m$ thick stainless steel plate was machined by using a $73\;{\mu}m$ diameter electrode. The diameters of the hole entrance and exit were $96\;{\mu}m$ and $88\;{\mu}m$, respectively. It took only 351s to completely drill one hole.

Wireless Power and Propulsion Transfer for Micro-Robot (초소형 마이크로 로봇의 무선 전력 및 동력 전송 기술)

  • Kim, Dongwook;Ahn, Seungyoung
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.13-14
    • /
    • 2015
  • 본 연구에서는 의료용으로 활용될 수 있는 초소형 마이크로 로봇을 위한 무선 전력 및 동력 전달 방법을 제안하였다. 기존의 무선전력전송 기술과 자기장 차폐 기술을 이용하여 무선전력으로 발생한 전류에 발생되는 Lorentz Force을 로봇에 적용할 수 있는 방법으로서, 효율적인 전력과 동력의 전달을 위한 설계 방법을 제안 하였고, 시뮬레이션과 측정을 통해 검증하였다.

  • PDF