• Title/Summary/Keyword: Micro Material Property

Search Result 148, Processing Time 0.028 seconds

Anti-fouling Property of Hydrophobic Surfaces in Sea Water (소수성 표면의 해수 방오성능)

  • Cho, S.H.;Ryu, S.N.;Hwang, W.B.;Yoon, B.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.82-87
    • /
    • 2013
  • Effects of material surface property, hydrophobic or hydrophilic, on the bio-fouling occurred on the bodies submerged in the sea water are investigated experimentally. 4 test models are used in the experiment, which includes aluminum foil in common use, AAO applied hydrophobic surface, HDFS coated hydrophobic surface and hydrophilic surface. Hydrophobic surfaces with numerous micro & nano-scale pillars on it seems to play very important role of preventing them from fouling in initial stage while the effects disappear in long term sense of fouling process. It is concluded that the surface hydrophobicity retards the initial fouling until the fouling thickness is smaller than the heights of the pillars on it but the effects diminish with the fouling proceeds so that the thickness grows bigger than the pillar heights.

Physical Property with the Manufacturing Conditions of Activated Carbon for Mercury Adsorption (제조조건에 따른 활성탄의 특성 및 수은 흡착 효율)

  • Min, Hyo-Ki;Ahmad, Tanveer;Park, Min;Lee, Sang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.302-314
    • /
    • 2015
  • There is an adsorption method using activated carbon as a typical method for removing elemental mercury. Physical characteristics of activated carbon such as specific surface area and volume of pore (micro and meso) have positive effect for mercury adsorption. Activated carbon is carbon-based material with a high specific surface area. This activated carbon can be manufactured through carbonization and activation process. In this process, physical characteristics of specific surface area and pore distribution are changed by controlling operating parameters like temperature, time and reagent of activation. In this study, we evaluated characteristics of activated carbons manufactured from pinewood and coal with the operating parameters. We evaluated mercury adsorption capacities of the activated carbons having excellent physical characteristics and compared those to the commercial activated carbon.

Analysis of Stress Distribution Around Micro Hole by F.E.M. -Stress Distribution around Defects Inclusions- (유한요소법에 의한 미소원공 주위의 응력분포 해석 -결함과 개재물 주위의 응력분포-)

  • 송삼홍;김진봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.555-564
    • /
    • 1994
  • This study has been made to investigate the stress distribution around defects and inclusions that behave as stress concentrators. The stress distribution and interation effects around defects and inclusions was analyzed using Finite Element Method. The results are as follows;(1) Maximum stress point in case of $E_I/E_M>1$($E_I$:elasticity modulus forthe inclusion, $E_M$/:elasticity modulus for the base material)is the vertical point with respect to force direction and in case of $E_I/E_M<1$ it is the parallel point along the hole edge. (2) Interaction effects of ${\sigma}_y$ for the inclusion side is larger than the defect side when the interval between inclusion and defect is near. (3) stress interation effects is large if the difference of ${\sigma}_y$ is small and it is small if the difference of ${\sigma}_y$ is large for the case that the interval between inclusion and defect whose size and property are different is near.

A study on micro-deburring of thin magnesium plate for application of electronic products (마그네슘 박판의 전자부품 적용을 위한 마이크로 디버링에 관한 연구)

  • Lee, Jung-In;Kim, Tae-Wan;Kwak, Jae-Seob;Jung, Young-Deug
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.70-73
    • /
    • 2012
  • Drill process is usually used to manufacture a industry about processing, Therefore, the burr problem is very significant, The burrs took place when drill process. And then, sometimes, the burrs are often caused of some problems during automatic such as no good quality products and having good surface roughness products. And also, this paper had some experiments using magnesium. Specially, the magnesium is one of the non-ferromagnetic materials. Magnesium has attracted a lot of interest for using the industry. They offer a possible alternative to steel and aluminum in automotive and aero industries to satisfy the lightweight requirement. also, magnesium has good specific strength and absorbs vibration in occurring working process. So, it has good quality of product processing. And then, it is one of the lightest materials being used to electronic product's cases and automotive because of lightweight and miniaturization. But this material has not widely used all of the industry due to its natural property. If the magnesium is contacted water, it will cause the exploration. But, nowadays many of people study magnesium to safe their experiment and to widely use this industry.

  • PDF

고출력 GaN-based LED의 열적 설계 및 패키징

  • 신무환
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.24-24
    • /
    • 2003
  • Research activity in the III-V nitrides materials system has increased markedly in the past several years ever since high-brightness blue light-emitting diodes (LEDs) became commercially available. Despite of excellent optical properties of the GaN, however, inherently poor thermal property of the sapphire used as a substrate material n these devices may lead to thermal degradation of devices, especially during their high power operation. Therefore, dependable thermal analysis and packaging schemes of GaN-based LEDs are necessary for solid lighting applications under high power operation. In this paper, emphasis will be placed upon thermal design of GaN-based LEDs. Thermal measurements of LEDs on chip and packaging scale were performed using the liquid crystal thermographic technology and micro thermocouples for different bias conditions. By a series of optical arrangement, hot spots with specific transition temperatures were obtained with increasing input power. Thermal design of LEDS was made using the finite element method and analytical unit temperature profile approach with optimal boundary conditions. The experimental results were compared to the simulated data and the results agree well enough for the establishment of dependable prediction of thermal behavior in these devices. The paper will present a more detailed understanding of the thermal analysis of the GaN-based blue and white LEDs for high power applications.

  • PDF

Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery (이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성)

  • Lee, Ho-Yong;Kim, Tae-Yeong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

Study about material properties of Al particles and deformation of Al alloy substrate by cold gas dynamic spray (초음속 저온분사법에 의한 알루미늄 합금 모재의 변형과 적층된 알루미늄 층의 물성에 대한 연구)

  • Lee, J.C.;Ahn, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.145-148
    • /
    • 2006
  • Cold gas dynamic spray is a relatively new coating process by which coatings can be produced without significant heating during the process. Cold gas dynamic spray is conducted by powder sprayed by supersonic gas jet, and generally called the kinetic spray or cold-spray. Cold-spray was developed in Russia in the early 1980s to overcome the defect of thermal spray method. Its low process temperature can minimize thermal stress and also reduce the deformation of the substrate. Most researches on cold-spray have focused on micro scale coating, but our research team tried to apply this method to macro scale deposition. The macro scale deposition causes deformation of a thin substrate which is usually convex to the deposited side. In this research, the main cause of the deformation was investigated using 6061-T6 aluminum alloy and properties of deposited aluminum layer such as coefficient of thermal expansion, Elastic modulus, hardness, electric conductivity were measured. From the result of the analysis, it was concluded that compressive residual stress was the main reason of substrate deformation while CTE had little effect.

  • PDF

Microstructure and Mechanical Property of A356 for Rheocasting Using 6-Pole Electromagnetic Stirring Casting Process (6극 전자석 전자교반 레오캐스팅에 따른 A356의 조직적 / 기계적 영향분석)

  • Kim, Baek-Gyu;Roh, Jung-Suk;Bang, Hee-Jae;Heo, Min;Park, Jin-Ha;Jeon, Chung-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2020
  • Rheo-diecasting with stirring has been used in many material industries. As the 4th Industrial Revolution approaches the world, eco-friendly high-strength and light-weight materials become more important. Casting methods have been studied and used for aluminum-alloy automobile parts. This study carried out the effect analysis of the micro-structure and mechanical properties, such as yield/ultimate tensile strength, elongation, and hardness, of A356 using the 6-pole EMS (electro-magnetic stirring) casting process with a high electromagnetic force. As a result, the hardness and elongation of the A356 after T6 heat-treatment show a significant improvement, respectively, by 20% and 50%.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.

Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss (트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.