• Title/Summary/Keyword: Micro Machining System

Search Result 197, Processing Time 0.026 seconds

A Study on the Machining Characteristics for Micro Endmilling by using Ultrahigh-Speed Air Turbine Spindle (초고속 스핀들에 의한 마이크로 엔드밀링의 가공특성에 관한 연구)

  • Kwon D.H.;Kang I.S.;Kim J.H.;Kang M.C.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.598-603
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. The appearance of ultra-precision feed mechanism and the development of control system make it possible to process parts in sub millimeter scale by mechanical methods. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro parts to micro products. So, micro stairs have been trying to cut by using high revolution air turbine spindle and micro-endmill, and studying for magnitude of cutting force. This investigation deals removal characteristics of burr generated by micro endmilling process. Also, decreasing of burr is significant problem in making smooth and precise parts in micro endmilling. In micro endmilling, the material removal rate(MRR) and cutting forces are very small. This paper presents an investigation on the machining characteristics for micro stairs by using ultrahigh-speed air turbine spindle in machining.

  • PDF

Machining of Repetitive Micro Patterns using Oscillation Micro Milling (진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구)

  • Ro, Seung-Kook;Khim, Gyungho;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

Deformation analysis of Tool and Tool holder for Micromachining by FEM (FEM을 이용한 Micromachining용 Tool 및 Tool holder의 변형해석)

  • Min, Kyung-Tak;Jang, Ho-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.87-92
    • /
    • 2010
  • Micromachining technology using a ultra-precision micromachining system is widely applied in the fields of optics, biotechnology and analytical chemistry, etc. specially in microfabrication of fresnel lens, light guide panels of TFT-LED and PDP ribs with micro-patterns, machining errors have an effect on the performance of those products. The deflection of tool and tool holder is known to be one of the very important factors that is due to machining errors in micromachining. The deflections of diamond tool and tool holder used in micro-grooving are analysed by FEM. We analysed by FEM. With an linearity valuation of FEM, deflection of tool and tool holder is calculated by using the data of cutting force which is acquired from micro-V groove machining experiments in micromachining system.

A study of Pulse EMM for Invar alloy (펄스 전압을 이용한 인바 합금의 미세 전해가공)

  • 김원묵;백승엽;이은상;탁용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.560-563
    • /
    • 2004
  • Invar is a compound metal of Fe-Ni system and contain 36% Ni. The most distinction characteristic of Invar is the coefficient of thermal expansion is 1.0 10$^{-6}$ /$^{\circ}C$. That is a tenth of general steel material. This low thermal expansion characteristic of Invar is applied to the missile, aircraft, monitor CRT and frontier display's shadow mask such as FED and OLED. The usage of the Invar shadow mask for display is increasing due to the requirement of larger size and flatness monitor. The Invar shadow mask is machined by two ways electro-forming and laser now. However the electro-forming takes a too long time and the laser machining is accompanied with Burr. In this study, PEMM(pulse electrochemical micro machining) is conducted to machine the micro hole to the Invar and 80${\mu}{\textrm}{m}$ hole was machined.

  • PDF

Development of a CAM System for Mold Machining using 3D Measurement Data (3차원 측정 데이터를 이용한 금형 가공용 CAM시스템 개발)

  • 구영회
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.79-88
    • /
    • 1998
  • This study deals with the development of CAM system which can machine and measure any shape of mold and die by machining center and coordinate measureing machine . The overall goal of the CAM system is to achieve the mold and die machining , from digitizing through to final cutting. The hardware of the system comprises PC and machining center. CMM. There are three steps in the mold and die machining. (1) measuring of physical model by the CMM, (2) geometric modeling by the CAD system, (3) generation of NC code by the tool path compensated for tool radius. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

Dispersion Characteristics of Nonspherical Fume Micro-Particles in Laser Line Machining in Terms of Particle Sphericity (입자 구형도에 따른 레이저 선가공의 비구형 흄 마이크로 입자 산포 특성 연구)

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This computational investigation of micro-sized particle dispersion concerns the fume particle contamination over target surface in high-precision laser line machining process of semiconductor and display device materials. Employing the random sampling based on probabilistic fume particle generation distributions, the effects of sphericity for nonspherical fume particles are analyzed for the fume particle dispersion and contamination near the laser machining line. The drag coefficient correlation for nonspherical particles in a low Reynolds number regime is selected and utilized for particle trajectory simulations after drag model validation. When compared to the corresponding results by the assumption of spherical fume particles, the sphericity of nonspherical fume particles show much less dispersion and contamination characteristics and it also significantly affects the particle removal rate in a suction air flow patterns.

Generation of Tool Paths for NC Machining of 3D Surfaces by Measurement Data (3차원 측정 곡면의 효율적인 NC 가공을 위한 공구 경로 생성)

  • 구영희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.207-212
    • /
    • 1997
  • The purpose of this study is the development of CAM system which can cut and measure any shape by machining center and coordinate measuring machine. The overall goal of the CAM system is to achieve the CNC machining, from digitizing through to final cutting. The hardware of the system comprises PC and machining center, CMM. There are three steps in the CNC machining, (1) workpiece measuring on the CMM, (2) geometric modeling by the CAD system, (3) NC commands generation by the tool path compensated for tool nose radius. It is developed a software package, with which can conduct a micro CAM system in the PC without economical burden.

  • PDF

A Study on the Mechanism of Micro-ECM by Use of Point Electrode Method (점 전극을 이용한 마이크로 전해가공 기구에 관한 연구)

  • Kim, Bong-Gyu;Jeon, Jong-Up;Park, Kyu-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.77-83
    • /
    • 2002
  • This research aimed at from the establishment of theory on micro electrochemical machining mechanism to the implementation of a practical fabrication system of micro parts. In detail, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result, the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.