• Title/Summary/Keyword: Micro Land Cover

Search Result 13, Processing Time 0.022 seconds

Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning (Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

Landscape mosaic pattern analysis system using land cover map for micro-spatial analysis of regional planning (지역계획의 미시적 공간분석을 위한 토지피복도 경관 모자이크 패턴 분석 시스템)

  • Lee, Young-Chang;Lee, Kyoung-Mi;Chon, Jinhyung
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1367-1375
    • /
    • 2017
  • Recently, the use of land cover maps has been continuously increasing to analyze spatial patterns such as spatial compositions, functions and changes of landscape mosaics. In this paper, we propose a landscape analysis system that extracts patches, which is an element of landscape mosaics, in the land cover map using region-based image processing technique, and computes patch-based measures at patch level and class level. Also we propose a patch-based spatial pattern that can represent spatial relations using the computed measures. To validate the proposed system's effectiveness, we apply to Gwangju metropolitan city and analyze Gwangju's land use and spatial patterns.

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

Geographically Weighted Regression on the Characteristics of Land Use and Spatial Patterns of Floating Population in Seoul City (서울시 유동인구 분포의 공간 패턴과 토지이용 특성에 관한 지리가중 회귀분석)

  • Yun, Jeong Mi;Choi, Don Jeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.77-84
    • /
    • 2015
  • The key objective of this research is to review the effectiveness of spatial regression to identify the influencing factors of spatial distribution patterns of floating population. To this end, global and local spatial autocorrelation test were performed using seoul floating population survey(2014) data. The result of Moran's I and Getis-Ord $Gi^*$ as used in the analysis derived spatial heterogeneity and spatial similarities of floating population patterns in a statistically significant range. Accordingly, Geographically Weighted Regression was applied to identify the relationship between land use attributes and population floating. Urbanization area, green tract of land of micro land cover data were aggregated in to $400m{\times}400m$ grid boundary of Seoul. Additionally public transportation variables such as intersection density transit accessibility, road density and pedestrian passage density were adopted as transit environmental factors. As a result, the GWR model derived more improved results than Ordinary Least Square(OLS) regression model. Furthermore, the spatial variation of applied local effect of independent variables for the floating population distributions.

Thermal Environment Transition of Response Climate Change and Heat Wave Application Evaporative Cooling System (기후변화 및 폭염대응 증발냉각시스템 적용에 따른 내·외부 열환경 변화 연구)

  • Kim, Jeong-Ho;Kim, Hak-Gi;Yoon, Yong-Han;Kwon, Ki-Uk
    • Journal of Environmental Science International
    • /
    • v.25 no.9
    • /
    • pp.1269-1281
    • /
    • 2016
  • This study evaporative cooling system a heat wave climate change and reduction of the inside and outside thermal environment change research. Measurement items included micro meteorological phenomena and measured comfort indices. A micro meteorograph of temperature, relative humidity, surface temperature, and the comfort indices of WBGT, UTCI, and PMV were measured. The difference in inside and outside temperatures were compared for different land types, with the largest difference found in Type A ($4.81^{\circ}C$), followed by Type B ($4.40^{\circ}C$) and Type C ($3.12^{\circ}C$). Relative humidity was about 10.43% higher inside due to water injection by the evaporative cooling system. Surface temperature was inside about $6.60^{\circ}C$ higher than the outside all types. WBGT were Type A ($3.50^{\circ}C$) > Type B ($2.71^{\circ}C$) > Type C ($1.88^{\circ}C$). UTCI was low heat stress inside than outside all types. PMV was analysed Type C for inside predicted percentage of dissatisfied 75%, other types was percentage of dissatisfied 100% by inside and outside. Correlation analysis between land cover type and temperature, surface temperature, pmv, utci. T-test analysed inside and outside temperature difference was significant in all types of land.

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Distribution of Culturable Bacteria of Bioaerosol according to Land Type in Winter in the City Center (도심지 겨울철 토지피복 유형별 바이오에어로졸 중 배양성 세균 분포)

  • Kim, Jeong-Ho;Yun, Yong-Han;Kim, Hak-Gi;Lee, Myeong-Hun;Park, Yeong-jin;Lee, Dong-Jae;Sin, Yong-jin
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.6
    • /
    • pp.669-678
    • /
    • 2021
  • This study surveyed three land cover types in Chungju City in Chungcheongbuk Province to check the distribution of cultured bacteria in bio-aerosols according to land cover type. It was possible to compare and analyze the distribution of bacteria according to microclimatic changes at each measurement point by examining meteorological factors and bio-aerosols according to land cover. The microclimate temperature in each measurement point was 8.7℃ for the urban forest, 10.8℃ for the waterside green area, and 10.2℃ for the urban area, indicating the urban forest had the lowest temperature among the measurement points. The relative humanity was 61.8% fin the urban forest, 59.3% in the waterside green area, and 55.7% in the urban area, indicating that the urban forest was the most humid among the measurement points. The identified bacteria were found to be 43 genera and 99 species. In terms of species diversity of cultured bacteria, 22 genera were found in the waterside green area, 21 genera in the urban forest, and 17 genera in the urban area, 37 species were found in the waterside green area, 31 species in the urban area, and 31 species in the urban forest. Bacillus toyonensis and Pseudarthrobacter oxydan were the species present in all three types of measurement sites, and Herbiconiux flava was confirmed to inhabit green areas such as urban forests and waterside green areas. The analysis result of the bacterial concentration according to the microclimatic environment in each measurement point was 333 CFU/m3 in the urban forest, 287 CFU/m3, in the waterside green area, and 173 CFU/m3 in the downtown area. The relative humidity and wind speed were analyzed to show a similar trend as the concentration. This study is expected to provide basic data for healthy urban management and green area creation by identifying the distribution of cultured bacteria in bio-aerosols according to land cover type and comparing and analyzing the traits of bio-aerosol in each measurement point.

Building Wind Corridor Network Using Roughness Length (거칠기길이를 이용한 바람통로 네트워크 구축)

  • An, Seung Man;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.101-113
    • /
    • 2015
  • The purpose of this study is increasing ventilation network usability for urban green space planning by enhancing its practicality and detail. A ventilation network feature extraction technique using roughness length($z_0$) was proposed. Continuously surfaced DZoMs generated from $z_0$(cadastral unit) using three interpolations(IDW, Spline, and Kriging) were compared to choose the most suitable interpolation method. Ventilation network features were extracted using the most suitable interpolation technique and studied with land cover and land surface temperature by spatial overlay comparison. Results show Kriging is most suitable for DZoM and feature extraction in comparison with IDW and Spline. Kriging based features are well fit to the land surface temperature(Landsat-7 ETM+) on summer and winter nights. Noteworthy is that the produced ventilation network appears to mitigate urban heat loads at night. The practical use of proposed ventilation network features are highly expected for urban green space planning, though strict validation and enhancement should follow. (1) $z_0$ enhancement, (2) additional ventilation network interpretation and editing, (3) linking disconnected ventilation network features, and (4) associated dataset enhancement with data integrity should technically preceded to enhance the applicability of a ventilation network for green space planning. The study domain will be expanded to the Seoul metropolitan area to apply the proposed ventilation network to green space planning practice.

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul - (고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 -)

  • YI, Chae-Yeon;KWON, Hyuk-Gi;Lindberg, Fredrik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.26-49
    • /
    • 2018
  • The purpose of this study was to verify the reliability of the solar radiation model and discuss its applicability to the urban area of Seoul for summer heat stress mitigation. We extended the study area closer to the city scale and enhanced the spatial resolution sufficiently to determine pedestrian-level urban radiance. The domain was a $4km^2$ residential area with high-rise building sites. Radiance modelling (SOLWEIG) was performed with LiDAR (Light Detection and Ranging)-based detailed geomorphological land cover shape. The radiance model was evaluated using surface energy balance (SEB) observations. The model showed the highest accuracy on a clear day in summer. When the mean radiation temperature (MRT) was simulated, the highest value was for a low-rise building area and road surface with a low shadow effect. On the other hand, for high-rise buildings and vegetated areas, the effect of shadows was large and showed a relatively low value of mean radiation temperature. The method proposed in this study exhibits high reliability for the management of heat stress in urban areas at pedestrian height. It is applicable for many urban micro-climate management functions related to natural and artificial urban settings; for example, when a new urban infrastructure is planned.