• Title/Summary/Keyword: Micro Injection

Search Result 450, Processing Time 0.033 seconds

Metal Injection Moulding -Technological Trends and European Business Situation

  • Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.229-230
    • /
    • 2006
  • The global metal injection moulding industry is getting mature. The technology is on its way to grow from a niche technology to a widely accepted manufacturing process. This paper addresses the latest technological trends in MIM. Challenges in materials development as well as the current limits of the technology are discussed. Trends in processing like 2-component injection moulding and micro injection moulding are presented. The European MIM market situation is described and some key factors for business success are addressed. In the discussion of future business opportunities best practice examples are included.

  • PDF

A study on the micro pattern replication properties of large area in injection molding (대면적 미세패턴 사출성형에서의 전사 특성 실험)

  • Kim, T.H.;Yoo, Y.E.;Je, T.J.;Kim, C.W.;Park, Y.W.;Choi, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.205-208
    • /
    • 2007
  • We injection molded a thin plate with micro prism patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, injection rate or packing pressure. The size of the $90^{\circ}$ prism pattern is $50{\mu}m$ and the size of the plate is $400mm{\times}400mm$. The thickness is 1mm. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns of the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF

A study on the prizm pattern replication in injection molding (사출 도광판의 프리즘 패턴 전사성에 관한 실험적 연구)

  • Kim, Chang-Wan;Yoo, Yeong-Eun;Kim, Tae-Hoon;Je, Tae-Jin;Choi, Doo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1537-1541
    • /
    • 2007
  • We injection molded a wedge type of plate with micro prizm patterns on its surface and investigated the fidelity of replication of the micro pattern depending on the process parameter such as mold temperature, melt temperature, injection rate or packing pressure. The size of the size of the $90^{\circ}$ prizm pattern is $50{\mu}m$ and the size of the plate is about 300㎜${\times}$200㎜. The thicknesses are 2.6㎜. and 0.7mm at each edge of the wedge type of plate. The fidelity of the replication turned out quite different according to the process parameters and location of the patterns on the plate. We measured the cavity pressure and temperature in real-time during the molding to analyze the effect of the local melt pressure and temperature on the micro pattern replication.

  • PDF

Effect of Mold Temperature on Injection Molding of Micro-Features with High Aspect Ratio (고세장비 미세형상 사출성형시 금형온도의 영향 고찰)

  • Park, Jung-Min;Do, Bum-Suk;Eom, Hye-Ju;Park, Keun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1124-1128
    • /
    • 2008
  • Thin-wall injection molding is associated with many advantages, including increased portability, the conserving of materials, and the reduction of the molding cycle times. In the application of the thin-wall molding, a considerable reduction of the effective flow thickness results in filling difficulty. High-frequency induction is an efficient way to overcome this filling difficulty by means of heating the mold surface by electromagnetic induction. The present study applies the induction heating to the injection molding of thinwalled micro structures with high aspect ratio. The feasibility of the proposed heating method is investigated through a numerical analysis. The estimated filling characteristics of the micro-features are investigated with variations of mold temperature and part thickness, of which results are also compared with experimental measurements.

  • PDF

A research about micro size polymer bead injecting process based on electrostatic force (정전기력 기반의 마이크로 사이즈 폴리머 비드 주입 공정 연구)

  • Yang, Bong-Su;Yang, Sung-Wook;Ko, Jung-Bum;Choi, Kyung-Hyun;Doh, Yang-Hoi
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2016
  • This research proposal is based on a novel non-contact technique of micro-sized bead injection process for fabrication of electronic paper display. This non-contact injection process is based on the principle of electrostatic force and uses micro-sized metal-coated beads dispersed in a solution. The dispersion retention times of three different solutions with viscosities of 10 cps, 100 cps, and 1000 cps were measured by optical equipment showing the retention times of 5 mins, 10 mins, and 30 mins respectively. The dispersion retention rate dropped as the time passed. The dispersion retention characteristic of 1000 cps solution was more stable as compared to those of 10 cps and 100 cps meaning that higher viscosity has better retention properties. The experimental results of bead injection at different viscosity levels of the solution were also measured and a stable injection result was achieved by using 1000 cps solution. This results show that stable injection is dependent on solution viscosity and dispersion.

A Study on the Machining Characteristics for Micro Lens Array Mold (마이크로 렌즈 어레이 금형의 가공특성에 관한 연구)

  • 정재엽;이동주;홍성민;제태진;이응숙
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.370-375
    • /
    • 2002
  • Recently, the interest on micro optical parts has increased rapidly with the development of technology related to microsystems. Among the optical parts, micro lens is one of the most broadly used micro parts. To mass-produce the micro lenses, it is very effective to use the mold insert and injection molding process. There are many methods to fabricate the mold insert for micro lenses: electroforming, etching, mechanical micromachining and so on. In this study, we fabricated the mold insert for micro lenses using a micro ball endmill to apply mechanical micromaching method and analyzed the effect of main process parameters such as spindle speed, feed rate, dwell time on the processed surface. Then, using fabricated the mold insert we fabricated the micro lenses through injection molding process.

  • PDF

An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm (유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구)

  • 김동광;조남효;차순창;조순호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.

A Study about Micro Mold for Polymer Injection (고분자소재 성형용 마이크로 금형에 관한 연구)

  • Heo Y. M.;Shin K. H.;Yoon G. S.;Jung W. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.271-275
    • /
    • 2004
  • In recent industry, according to pursuit the miniaturization and high-precision of machine part with development of new technology as IT and BT, the development of mold manufacturing technology for mass production is accompanied. This study proposes the design of micro mold-base, predicts the error of product through estimating transformation of injection process using FEM. Therefore the mold-base which is suitable for micro injection proposed in this study. Finally, the error of feature is analyzed by measuring the manufactured micro mold-base.

  • PDF

Improvement of Moldability for Ultra Thin-Wall Molding with Micro-Patterns (마이크로 패턴을 가진 초박육 사출성형의 성형성 개선)

  • Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.556-561
    • /
    • 2007
  • The rapid thermal response(RTR) molding is a novel process developed to raise the temperature of mold surface rapidly in the injection stage and then cool rapidly to the ejection temperature by air or water. The objectives of this paper are to investigate the effect of mold temperature, pressure and thickness of micro pattern molding and to provide a optimization of RTR injection molding for micro pattern from Moldflow simulation. Optimal minimum temperature and pressure was found without shortcut according to thickness. Filling percentage was influenced by glass transition temperature with the kinds of resin. Optimal temperature is slightly higher than glass transition temperature irrespectively of pressure, thickness, the kinds of resin in the micro pattern molding.