• Title/Summary/Keyword: Micro Hydro Power

Search Result 28, Processing Time 0.025 seconds

A Study on the Modeling Analysis for Kaplan Micro-turbines (케프란 마이크로터빈의 모델링 해석에 관한 연구)

  • Kim, O.S.;Kim, I.S.;Kim, H.H.;Shim, J.Y.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.105-110
    • /
    • 2006
  • Among many other alternative energy resources, small scale hydro power has been brought into attention as a reliable source of energy today, which had been relatively neglected since 1960s. Especially, Kaplan micro-turbine can be applied to various kind of small hydro power plants, such as reservoirs for agriculture purpose, sewage treatment plants and water purification plants. However present low head of Kaplan micro-turbines and small scale hydro turbines, have limitations in the minimum required head and flow rate for efficient operation. This research is to develop modeling analysis for the Kaplan micro-turbine, which can improve economical features of small hydro power plants. The contents and scope of this research are the efficiency improvement of Kaplan micro-turbine.

  • PDF

Selective Corrosion of Socket Welds of Stainless Steel Pipes Under Seawater Atmosphere (해수분위기에서 스테인리스강 배관 소켓 용접부의 선택적 부식)

  • Boo, Myung-Hwan;Lee, Jang-Wook;Lee, Jong-Hoon
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.224-230
    • /
    • 2020
  • Stainless steel has excellent corrosion resistance. The drawback is that pitting occurs easily due to the concentration of chloride. In addition, corrosion of socket weld, which is structurally and chemically weaker than the other components of the pipe, occurs rapidly. Since these two phenomena overlap, pinhole leakage occurs frequently in the seawater pipe socket welds made of stainless steel at the power plants. To analyze this specific corrosion, a metallurgical analysis of the stainless steel socket welds, where the actual corrosion occurred during the power plant operation, was performed. The micro-structure and chemical composition of each socket weld were analyzed. In addition, selective corrosion of the specific micro-structure in a mixed dendrite structure comprising γ-austenite (gamma-phase iron) and δ-ferrite (iron at high temperature) was investigated based on the characteristic micro-morphology and chemical composition of the corroded area. Finally, the different corrosion stages and characteristics of socket weld corrosion are summarized.

Hail Impact Analysis of Photovoltaic Module using IEC Test (IEC 우박시험에 대한 태양광모듈 충돌 해석)

  • Park, Jung-Jae;Park, Chi-Yong;Ryu, Jae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • The loss in photovoltaic power due to hailstorms has been highlighted as a major issue in the sustained growth of the PV power plant industry. This study investigates the safety of a solar module by conducting a numerical analysis of a hail test according to the IEC 61215 standard. Our study aims to elucidate the detailed behavior between the ice and solar modules and the micro-cracks forming on solar modules during hailstorms. To analyze the impact of hail, we used the ANSYS AUTODYN software to evaluate the impact characteristics on a solar module with different front glass thicknesses. The simulations show that a solar module with a glass thickness of 4.0 mm results in excellent durability against hail. The results indicate the feasibility of using simulations to analyze and predict micro-cracks on solar modules tailored to various conditions, which can be used to develop new solar modules.

A Scheme on Energy Efficiency Through the Convergence of Micro-grid and Small Hydro Energy (마이크로그리드와 소수력 에너지의 융합을 통한 에너지 효율화 기법)

  • Kang, Bo-Seon;Lee, Keun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 2015
  • As smart grid techniques developed, public attention is concentrating on energy efficiency. So it is necessary to study on new renewable energy in order to manage the energy within micro grid consisting smart grid. Among them, small hydro energy has the advantage of being installable anywhere depending the amount of water used by the users within micro grid. This study examines if the measured value is appropriate for small hydro power generation by measuring generation quantity and operation rate of generator based on the sewage flow used by apartments and multi-unit dwellings where those users live. Some appropriate apartments and multi-unit dwellings generate electricity with small hydro generator using sewage as potential energy. This study intends to suggest more effective management by introducing energy management system and electricity storage device of micro grid.

Performance Analysis of a Micro-Hydro Pelton Turbine for the Osmotic Power Generation (삼투압발전용 마이크로 펠턴터빈의 성능해석)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2011
  • This paper presents the transient performance analysis of a micro-hydro Pelton turbine for the osmotic power generation using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow field in the micro Pelton turbine with a single-jet is investigated by the CFD code adopted in the present study. Predicted characteristic curves agree fairly well with measured data for a prototype Pelton turbine over the normal operating conditions. The computational analysis method presented herein can be effectively applied to the hydraulic design optimization process of general purpose Pelton turbine runners.

Experiments on Efficiency of Standing Type Waterwheel with Narrow Canal for Micro/Small Scale Hydro Power Plant (초소수력발전용 좁은 수로 고정형 수직수차 성능실험)

  • Kim, Dong-Jin;Lee, Kyong-Ho;Ahn, Kook-Chan;Kim, Bong-Hwan;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.5
    • /
    • pp.104-108
    • /
    • 2012
  • Recently, small scale hydropower needs to be developed due to its clean, renewable and abundant energy resources. However, suitable draft of hydro-turbine body in combination with differences in wheel blade shapes is not determined yet in the range of small hydropower and it is necessary to study for the effective draft in combination with type. Therefore, watermill shaped of 250mm diameter. hydro-turbine aiming 20 watt class generator is adopted in this study because of its simple structure and high possibility of applying to small hydropower. The result shows that effective draft for the turbine body is variable concerning the size of turbine and flow rate of water. Thus, the difference of water depth between fore and aft turbine body contributes to the increase of torque, angular momentum and power output.

CFD Performance analysis of Micro Tubular-type hydro turbine by blade shape (블레이드 형상 변화에 따른 마이크로 튜블러 수차의 CFD 성능해석)

  • Park, Ji-Hoon;Hwang, Young-Cheol;Mo, Jang-Oh;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.1-206.1
    • /
    • 2011
  • Recently, various developments in the area of small hydropower have being made and small hydro turbines are suitable for domestic use because it is a clean and renewable energy source. A small hydropower generator produces power by using the different water pressure levels in pipe lines and energy which was initially wasted by use of a reducing valve at the end of the pipeline is instead collected by a tubular-type hydro turbine in the generator. In this study, in order to acquire the performance of tubular-type hydro turbine applied, the output power, head, efficiency characteristics due to the different guide vane and runner vane angle are examined in detail. Moreover, influences of pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

A Study on the Application of Micro Hydro Power Generator at the Water Treatment Plant (정수장 마이크로 소수력 발전기 적용에 대한 연구)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.67-72
    • /
    • 2014
  • Inflow or outflow from the water treatment plant and the sewage water has potential energy. If this potential energy can be converted into electrical energy by water turbine generator, it can help to save energy because of the high capacity utilization. So recently, micro hydro power plant is reviewed in the water treatment facility. If generation capacity is low, induction generator is primarily used. If output capacity is low, generated power is supplied to the inside load. Induction generator can cause voltage drop by the inrush current at a start-up and requires reactive power for magnetization. In this study, we analyzed the flow of power and voltage variation against inrush current that occurs when the induction generator starts under the terms that loads of linear and non-linear of the water purification plant are used. Analysis results are that the voltage drop is within an allowable range and the power factor is slightly reduced by the need of reactive power.