• Title/Summary/Keyword: Micro Fabrication Technology

Search Result 563, Processing Time 0.024 seconds

A Study on the Micro Pattern Fabrication of Lab-on-a-chip Mold Master using Micro EDM (Micro EDM을 이용한 Lab-on-a-chip금형의 미세 패턴 제작에 관한 연구)

  • Shin, B.C.;Kim, K.B.;Cho, M.W.;Kim, B.H.;Jung, W.C.;Heo, Y.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Recently, analyzing system is studying for applying to biomedical engineering field, actively. Micro fluidics control system has been manufactured using LIGA (Lithographie Galvanoformung und Abformung), Etching, Lithography and Laser etc. However, it is difficult that above-mentioned methods are applied to fabrication of precision mold master efficiently because of long processing time and rising cost of equipments. Therefore, in this study, micro EDM and micro WEDG system were developed to analyze machining characteristics with tool wear, surface roughness and process time. Then, optimal machining conditions could be obtained from the results of analysis. As the results, mold master of staggered herringbone mixer which has a high mixing efficiency, one of passive mixer of Lab-on-a-chip, could be fabricated from micro pattern(< 50um) using micro EDM successfully.

Fabrication of PDMS Mold by AFM Based Mechanical TNL Patterning (AFM기반 기계적 TNL 패터닝을 통한 PDMS 몰드제작)

  • Jung, Y.J.;Park, J.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.831-836
    • /
    • 2013
  • This study demonstrates the process of fabricating patterns using tribonanolithography (TNL),with laboratory-made micro polycrystalline diamond (PCD) tools that are attached to an atomic force microscope (AFM). The various patterns are easily fabricated using mechanical scratching, under various normal loads, using the PCD tool on single crystal silicon, which is the master mold for replication in this study. Then, polydimethylsiloxane (PDMS) replica molds are fabricated using precise pattern transfer processes. The transferred patterns show high dimensional accuracy as compared with those of TNL-processed silicon micro molds. TNL can reduce the need for high cost and complicated apparatuses required for conventional lithography methods. TNL shows great potential in that it allows for the rapid fabrication of duplicated patterns through simple mechanical micromachining on brittle sample surfaces.

Fabrication of Nano Composites Using Hybrid Rapid Prototyping (하이브리드 쾌속 조형을 이용한 나노 복합재의 조형)

  • Chu W.S.;Kim S.G.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

Development of Automatic Tool Change System of the SMA-Based Tool Clamping Device (형상기억합금 기반 공구클램핑 장치를 위한 자동공구교환 시스템 개발)

  • Shin, Woo-Cheol;Ro, Seung-Kook;Kim, Byung-Sub;Park, Jong-Kweon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.710-715
    • /
    • 2010
  • This study developed an automatic tool change system of the SMA-based tool clamping device for applications of micro-machine tools. This paper first describes clamping and unclamping procedures of the automatic tool change system and its basic configuration. Second, it presents fabrication techniques of components, such as a heating/cooling system and a tool loader. Finally, it describes automatic tool change test conducted with a prototype in which the fabrication techniques of components were employed. As the results of the test, times needed for clamping and unclamping operations were estimated to 18(s) and 8(s) respectively. The experimental results confirm that the proposed automatic tool change system can be sucessfully applied to micro-machine tools.

Ni-Co Alloy Electroforming for Micro Mold Fabrication (마이크로 금형 제작을 위한 니켈-코발트 합금 전주기술개발)

  • Shin S. H.;Jeong M. K.;Kim Y. S.;Han S. H.;Hur Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.276-279
    • /
    • 2004
  • The factors affecting Ni-Co alloy electroforming were investigated to determine the optimum bath composition and electroplating parameters, like pH, temperature, and current density, suitable for high speed fabrication of a micro mold with longer lifetime. To obtain alloy deposits having uniform thickness and composition, electroplating parameters were finely tuned with home-made electroforming apparatus. Ni-Co alloy deposits had linearly increased Co with $Co^{2+}$ ion concentration in electroplating bath, and showing $412H_v$ of Victors hardness at $23wt\%$ of Co content. For Ni-Co alloy, sulfonate and diol related organic additives were very effective to alleviate its residual stress and surface roughness. The maximum deposition rate was $106{\mu}m/hr$ at 10ASD and the tensile strength of alloy deposit was 2 times larger than that of Ni only case.

  • PDF

Fabrication of Micro Mirror Array for Small Form Factor Optical Pick-up by Micro UV-Molding (마이크로 UV성형을 통한 초소형 광픽업용 마이크로 미러 어레이 제작)

  • Choi Yong;Lim Jiseok;Kim Seokmin;Sohn Jin-Seung;Kim Hae-Sung;Kang Shinill
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.477-481
    • /
    • 2005
  • Wafer scale micro mirror array with high surface quality for small form factor (SFF) optical pick-up was fabricated by micro UV-molding. To replicate micro mirror array for SFF optical pick-up, a high- precision mold was fabricated using micro-machining technology. Wafer scale micro mirror array was UV-molded using the mold and then the process was optimized experimentally. The surface flatness and roughness of UV-molded micro mirror array were measured by white light scanning interferomety system and analyzed the transcribing characteristics. Finally, the measured flatness of UV-molded micro mirror away for SFF optical pick-up, which was fabricated in the optimum processing condition, was less than 70nm.

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

The Micro-Actuator Development of using the Bubble (기포를 이용한 마이크로 액츄에이터 개발)

  • 최종필;반준호;전병희;장인배;김헌영;김병희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.381-385
    • /
    • 2003
  • This paper presents the fabrication possibility of the micro actuator which uses a micro-thermal bubble, generated by a micro-heater under pulse heating. The micro-actuator is consist of three plate. The lower plate includes the channel and chamber are fabricated on high processability silicon wafer by the DRIE(Deep Reactive ion Etching) process. The middle plate includes the chamber and diaphragm, and the upper plate is the micro-heater. The micro-heater designed non-uniform width and results in periodic generation of stable single bubbles in D.I water. The single bubble appears precisely on the narrow part of the micro-heater and control is recorded.

  • PDF

Fabrication of Colloid Thrusters using MEMS Technology

  • Park, Kun Joong;Song, Seung Jin;Sanchez, Manuel Martinez
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.588-592
    • /
    • 2004
  • This paper presents the preliminary fabrication results of colloid thrusters which can provide thrust of the order of micro to milli-Newtons. MEMS technology has been used for fabrication, and four essential fabrication techniques - deep etching with nested masks, isotropic plasma etching, anisotropic reactive ion etching, and direct fusion wafer bonding - have been newly developed. Among diverse models which have been designed and fabricated, the fabrication results of 4-inch wafer-based colloid thrusters are presented.

  • PDF

Bio-Inspired Micro/Nanostructures for Functional Applications: A Mini-Review

  • Young Jung;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Three-dimensional (3D) micro/nanostructures based on soft elastomers have received extensive attention in recent years, owing to their potential and advanced applicability. Designing and fabricating 3D micro/nanostructures are crucial for applications in diverse engineering fields, such as sensors, harvesting devices, functional surfaces, and adhesive patches. However, because of their structural complexity, fabricating soft-elastomer-based 3D micro/nanostructures with a low cost and simple process remains a challenge. Bio-inspired designs that mimic natural structures, or replicate their micro/nanostructure surfaces, have greatly benefited in terms of low-cost fabrication, scalability, and easy control of geometrical parameters. This review highlights recent advances in 3D micro/nanostructures inspired by nature for diverse potential and advanced applications, including flexible pressure sensors, energy-harvesting devices based on triboelectricity, superhydrophobic/-philic surfaces, and dry/wet adhesive patches.