• Title/Summary/Keyword: Micro Electromechanical Systems (MEMS)

Search Result 16, Processing Time 0.024 seconds

Improvement of a Low Cost MEMS Inertial-GPS Integrated System Using Wavelet Denoising Techniques

  • Kang, Chang-Ho;Kim, Sun-Young;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.371-378
    • /
    • 2011
  • In this paper, the wavelet denoising techniques using thresholding method are applied to the low cost micro electromechanical system (MEMS)-global positioning system(GPS) integrated system. This was done to improve the navigation performance. The low cost MEMS signals can be distorted with conventional pre-filtering method such as low-pass filtering method. However, wavelet denoising techniques using thresholding method do not distort the rapidly-changing signals. They can reduce the signal noise. This paper verified the improvement of the navigation performance compared to the conventional pre-filtering by simulation and experiment.

Ignition Safe-Arm-Unit Using Micro-Electromechanical Systems (MEMS를 이용한 추진기관 점화안전장치)

  • Jang, Seung-Gyo;Lee, Sang-Hun;Chang, Hyun-Kee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.282-285
    • /
    • 2009
  • Ignition Safe-Arm-Unit using micro-electromechanical systems(MEMS) for propulsion system was designed and manufactured. MEMS was designed according to the design schemes for conventional mechanical elements. By comparing the design results and the test data of the prototype, small discrepancy was found, which is due to the nonlinear characteristic of the structure and the machining accuracy. The applicability of MEMS for Safe-Arm-Unit was proved by testing MEMS which is assembled into SAU.

  • PDF

TOC (Transceiver-on-Chip)를 위한 RF MEMS (Micro Electromechanical Systems) 기술

  • 전국진;성우경
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.55-60
    • /
    • 2001
  • RF MEMS is an exciting emerging technology that has great potential to develop TOC (Transceiver-on-Chip). Applications of the RF MEMS to wireless communications systems are presented. The ability of the RF MEMS technology to enhance the performance and to reduce the size of passive components, in particular, switches, inductors, and tunable capacitors, is addressed. A number of potential wireless system opportunities for the TOC are awaiting the maturation of the RF MEMS technology.

  • PDF

Improved Power Capability with Pyrolyzed Carbon Electrodes in Micro Direct Photosynthetic/Metabolic Bio-fuel Cell

  • Moriuchi, Takeyuki;Morishima, Keisuke;Furukawa, Yuji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.23-27
    • /
    • 2008
  • As a biofuel source, direct photosynthetic/metabolic biofuel cells (DPBFC) use cyanobacteria whose photosynthesis and metabolization reactions can convert light energy to electricity, In our previous work, we fabricated a prototype micro-DPBFC that could generate a peak current density of $36{\mu}A/cm^{2}$ and a maximum power density of $270nW/cm^{2}$. In this study, we improve on the previous results by using carbon micro electromechanical systems (C-MEMS), formed from the pyrolysis of patterned photoresist, to fabricate carbon electrodes of an arbitrary shape and controlled porosity to increase the surface area. With these new C-MEMS electrodes, the maximum power density of the micro-DPBFC was $516nW/cm^{2}$, a performance twice as good as the results of our previous work.

A Micro Tribotester for MEMS Elements

  • Kim Choong-Hyun;Ahn Hyo-Sok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.39-43
    • /
    • 2006
  • A computer-controlled micro tribotester has been developed to investigate the friction and wear characteristics of thin coatings, which can be applied to silicon-based materials. In the developed system, a step motor gives a reciprocating movement and an electromagnet applies a load between a ball and a plate specimen. Test results confirmed that the application of load in the range of $0.03{\sim}1.8N$ and with a sliding speed of $4.44{\sim}7.70mm/s$ was successfully accomplished. Advantages of the developed micro tribotester are: (1) realization of micro load and displacement applicable to micro electromechanical systems(MEMS) using DC motor and electromagnet (2) continuously variable load and reciprocating speed; and (3) high reliability, which allows for unattended use for long periods.

Application of Biomimetic Surfaces for MEMS Tribology

  • Singh, R.Arvind;Pham, Duc-Cuong;Yoon, Eui-Sung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1556-1557
    • /
    • 2008
  • "Biomimetics" is the study and simulation of biological systems with desired properties. In recent times, biomimetic surfaces have emerged as novel solutions for tribological applications in micro-electromechanical systems (MEMS). These biomimetic surfaces are attractive for MEMS application as they exhibit low adhesion/friction and wear properties at small-scales. In this paper, we present some of the examples of biomimetic surfaces that have potential application in small-scale devices.

  • PDF

Improved Yaw-angle Estimation Filter as a Function of the Actual Maneuvers for a Cleaning Robot (주행조건 식별을 이용한 로봇청소기의 진행각 추정을 위한 향상된 필터설계)

  • Cho, Yoon Hee;Lee, Sang Cheol;Hong, Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.470-476
    • /
    • 2016
  • This paper proposes a practical algorithm for the reduction of measurement errors due to drift in a micro-electromechanical system (MEMS) gyros that are used for a mobile robot. Any drift in a MEMS gyro will cause an unbounded growth of errors in the estimation of heading, which makes it nearly useless in applications that require high accuracy over a long operating time. In proposed method, maneuvers of a cleaning robot are observed through encoders' measurement process and a decision to correct bias drift will be made if necessary. The method used in this paper is called the "heading estimation filter". To evaluate the accuracy of the proposed method, a comparison was made between the estimation of the heading of the cleaning robot and one from a motion capture system.

Design of a smart MEMS accelerometer using nonlinear control principles

  • Hassani, Faezeh Arab;Payam, Amir Farrokh;Fathipour, Morteza
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • This paper presents a novel smart MEMS accelerometer which employs a hybrid control algorithm and an estimator. This scheme is realized by adding a sliding-mode controller to a conventional PID closed loop system to achieve higher stability and higher dynamic range and to prevent pull-in phenomena by preventing finger displacement from passing a maximum preset value as well as adding an adaptive nonlinear observer to a conventional PID closed loop system. This estimator is used for online estimation of the parameter variations for MEMS accelerometers and gives the capability of self testing to the system. The analysis of convergence and resolution show that while the proposed control scheme satisfies these criteria it also keeps resolution performance better than what is normally obtained in conventional PID controllers. The performance of the proposed hybrid controller investigated here is validated by computer simulation.

Analysis of Pull-in-Voltage and Figure-of-Merit of Capacitive MEMS Switch

  • Saha, Rajesh;Maity, Santanu;Devi, Ngasepam Monica;Bhunia, Chandan Tilak
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.129-133
    • /
    • 2016
  • Theoretical and graphical analysis of pull-in-voltage and figure of merit for a fixed-fixed capacitive Micro Electromechanical Systems (MEMS) switch is presented in this paper. MEMS switch consists of a thin electrode called bridge suspended over a central line and both ends of the bridge are fixed at the ground planes of a coplanar waveguide (CPW) structure. A thin layer of dielectric material is deposited between the bridge and centre conductor to avoid stiction and provide low impedance path between the electrodes. When an actuation voltage is applied between the electrodes, the metal bridge acquires pull in effect as it crosses one third of distance between them. In this study, we describe behavior of pull-in voltage and figure of merit (or capacitance ratio) of capacitive MEMS switch for five different dielectric materials. The effects of dielectric thicknesses are also considered to calculate the values of pull-in-voltage and capacitance ratio. This work shows that a reduced pull-in-voltage with increase in capacitance ratio can be achieved by using dielectric material of high dielectric constant above the central line of CPW.

A Study on the Method of Transferring Metal Specimens for Real-time Transmission Electron Microscopy using Ultrasonic Treatment (초음파 처리 활용 실시간 투과전자현미경 관찰용 금속 시편 전사 방법에 관한 연구)

  • H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2024
  • Micro-electromechanical systems (MEMS) based in-situ heating holders have been developed to enable high resolution imaging of heat treatment analysis. However, unlike the standard 3 mm metal disk specimens used in the furnace-based heating holder and general transmission electron microscopy holder, the MEMS-based in-situ heating holder requires thin specimens that can be penetrated by electrons to be transferred onto the MEMS chip. Previously, focused ion beam milling was used to transfer metal specimens, but it has the disadvantage of being expensive and the risk of specimen damage due to gallium ions. Therefore, in this study, we devised a method of transferring metallic materials by ultrasonic treatment using a transmission electron microscopy specimen made by electro jet polishing. A 3mm electropolished metal disk was placed in an appropriate solution, ultrasonicated, and then drop casted. The transfer of the specimen was successful, but it was confirmed that dislocations were formed inside the specimen due to ultrasonic treatment. This study provides a novel method for transferring metallic materials onto MEMS chips, which is cost-effective and less gallium ion damaging to the specimen. The results of this study can be used to improve the efficiency of heat treatment analysis using MEMS-based in-situ heating holders.