• Title/Summary/Keyword: Micro Droplet

Search Result 182, Processing Time 0.025 seconds

Correlation Between Spray Characteristics and Etching Characteristics in Twin Spray (이중분무에서 분무특성과 에칭특성의 상호상관)

  • Jung, Ji-Won;Kim, Young-Jin;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.449-455
    • /
    • 2004
  • The objective of this study is to obtain the correlation between the spray characteristics and the etching characteristics for the optimization of etching system in the micro fabrication industry. The etching characteristics such as etching rate were measured under different conditions. The single spray characteristics such as droplet size and velocity were measured by PDA system. These were compared to the etching characteristics. The twin spray characteristics in the overlap region were analyzed to predict the effect of them on the etching characteristics with the pitch and also were compared to the single spray. The etching rate was increased in case of high spray pressure and in the region of spray center. It was found that the etching characteristics could be correlated with the single spray characteristics and the twin spray characteristics were correlated with the etching characteristics.

Vortex Interaction Characteristics of a Delta Wing/LEX (삼각날개/LEX에서의 와류 상호작용 특성)

  • 이기영;손명환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.77-86
    • /
    • 2002
  • An experimental study of the vortex interaction characteristics of a delta wing/LEX configuration was conducted in a wind tunnel using the micro water droplet and laser beam sheet visualization technique. The main focus of this study was to analyze the effect of the angle of attack and sideslip angle on the vortex interaction and vortex breakdown. These tests were accomplished at angles of attack between $16^{\circ}$ and $28^{\circ}$ and sideslip angle between $0^{\circ}$ and $-15^{\circ}$ at free-stream velocity of 6.2 m/s. Flow visualization data provide a description of the vortex interaction between LEX and wing vortices, and of the vortex breakdown. The introduction of LEX vortex stabilized the vortical flow, and delayed the vortex breakdown up to higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas they are suppressed on the leeward side.

A novel surface cleaning process using laser-induced breakdown of liquid (액체의 레이저 유기 절연파괴를 이용한 신개념 표면 세정 공정)

  • Jang, Deok-Suk;Lee, Jong-Myoung;Kim, Dong-Sik
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.17-25
    • /
    • 2009
  • The surface cleaning method based on the laser-induced breakdown (LIB) of gas and subsequent plasma and shock wave generation can remove small particles from solid surfaces. In the laser shock cleaning (LSC) process, a high-power laser pulse induces optical breakdown of the ambient gas above the solid surface covered with contaminant particles. The subsequently created shock wave followed by a high-speed flow stream detaches the particles. In this work, a novel surface cleaning process using laser-induced breakdown of liquid is introduced and demonstrated. LIB of a micro liquid jet increases the shock wave intensity and thus removes smaller particle than the conventional LSC method. Experiments demonstrate that the cleaning force and cleaning efficiency are also increased significantly by this method.

  • PDF

Effect of Water on Continuos Spray and Flame in Emulsified Fuel made by Ultrasonic Energy (초음파 에너지로 제조된 유화연료의 수액이 분무 및 화염에 미치는 영향)

  • Lee, Seung-Jin;Ryu, Jeong-In
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.9-16
    • /
    • 2005
  • To investigate spray and combustion of emulsified fuel of W/O type, we mixed water with light oil by using ultrasonic energy adding system. We measured the SMD of sprayed droplet to find atomization characteristics of emulsified fuel with using the Malvern 2600D system. Major parameters are the weight ratio of water($0{\sim}30%$ by 10%) in emulsified fuel injection pressure(lobar), and the measurement distance($10{\sim}100mm$ by 10mm). Combustion visualizing system is made up commonly used boiler system and digital camera 1/500s to investigate combustion phenomena. As a result, the more water contents increased, the more SMD increased. The water particle of emulsified fuel made short flame in continuos spray combustion phenomena because of micro explosion.

  • PDF

A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구)

  • Jo, Yong-Min;Park, Sung-Jun
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

Effects of Micro-current Stimulation on lipid metabolism in Oleic Acid-Induced Non-Alcoholic Fatty Liver disease in FL83B cells (올레산으로 유도된 비알코올성 지방간 세포 모델에서의 미세전류 자극의 지질 대사 조절 효능 평가)

  • Lee, Hana;Lee, Minjoo;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Non-alcoholic fatty liver disease(NAFLD) is excessive hepatic lipid accumulation mainly caused by obesity. This study aimed to evaluate whether micro-current stimulation(MCS) could modulate lipid metabolism regarding the Sirt1/AMPK pathway, fatty acid β-oxidation pathway, and lipolysis and lipogenesis-related factors in FL83B cells. For the NAFLD cell model, FL83B cells were treated with oleic acid for lipid accumulation. MCS were stimulated for 1 hr and used frequency 10 Hz, duty cycle 50%, and biphasic rectangular current pulse. The intensity of MCS was divided into 50, 100, 200, and 400 ㎂. Through the results of Oil red O staining, it was confirmed that MCSs with the intensity of 200 ㎂ and 400 ㎂ significantly reduced the degree of lipid droplet formation. Thus, these MCS intensities were applied to western blot analysis. Western blot analysis was performed to analyze the effects of MCS on lipid metabolism. MCS with the intensity of 400 ㎂ showed that significantly activated the Sirt1/AMPK pathway, a key pathway for regulating lipid metabolism in hepatocytes, and fatty acid β-oxidation-related transcription factors. Moreover, it activated the lipolysis pathway and suppressed lipogenesis-related transcription factors such as SREBP-1c, FAS, and PPARγ. In the case of MCS with the intensity of 200 ㎂, only PGC1α and SREBP-1c showed significant differences compared to cells treated only with oleic acid. Taken together, these results suggested that MCS with the intensity of 400 ㎂ could alleviate hepatic lipid accumulation by modulating lipid metabolism in hepatocytes.

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E1
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle (단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • In the micro turbojet engine less than 350kw power class, it is not easy to find out the good atomization fuel injector with good spray quality. However conceptually, rotating fuel injection system can give high atomization quality by only the centrifugal force of a high speed rotating shaft of the engine without high-pressure fuel pump. With this motivation, we manufactured very small rotating fuel injector of 40 mm diameter and performed under a variety of injection orifices. We measured droplet size, velocity and spray distribution by the PDPA(Phase Doppler Particle Analyzer) system. Also spray was visualized by using high speed camera. From the test results, we could understand that the length of liquid column from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet size(SMD) is decreased with the rotational speeds and is influenced by the diameter of the injection orifice and liquid film thickness.

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

An intercomparison study between optimization algorithms for parameter estimation of microphysics in Unified model : Micro-genetic algorithm and Harmony search algorithm (통합모델의 강수물리과정 모수 최적화를 위한 알고리즘 비교 연구 : 마이크로 유전알고리즘과 하모니 탐색 알고리즘)

  • Jang, Jiyeon;Lee, Yong Hee;Joo, Sangwon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • The microphysical processes of the numerical weather prediction (NWP) model cover the following : fall speed, accretion, autoconversion, droplet size distribution, etc. However, the microphysical processes and parameters have a significant degree of uncertainty. Parameter estimation was generally used to reduce errors in NWP models associated with uncertainty. In this study, the micro- genetic algorithm and harmony search algorithm were used as an optimization algorithm for estimating parameters. And we estimate parameters of microphysics for the Unified model in the case of precipitation in Korea. The differences which occurred during the optimization process were due to different characteristics of the two algorithms. The micro-genetic algorithm converged to about 1.033 after 440 times. The harmony search algorithm converged to about 1.031 after 60 times. It shows that the harmony search algorithm estimated optimal parameters more quickly than the micro-genetic algorithm. Therefore, if you need to search for the optimal parameter within a faster time in the NWP model optimization problem with large calculation cost, the harmony search algorithm is more suitable.