• Title/Summary/Keyword: Micro Cutting

Search Result 376, Processing Time 0.03 seconds

Micro End-Mill Machining Characters and its Applications (마이크로 앤드밀의 가공특성분석 및 응용가공 연구)

  • Jae, Tae-Jin;Lee, Eung-Sook;Choi, Doo-Sun;Hong, Sung-Min;Lee, Jong-Chan;Choi, Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.589-592
    • /
    • 2003
  • In the machining process of micros shape by using high-precision machining system and micro end-mill, it is important for machining characters of tools to be grasped in order to stably use tools of micro end-mill. In this study. we carried out an analytical experiment of basic machining features by using end-mill tools for the purpose of damage prevention and manufacture of high quality when the tools of micro end-mill are used. This experiment used a micro machining system with high precision and a variety of end-mill tools commercialized from tens to hundreds microns in diameter. To establish an optimal machining condition without tool damage, cutting force was analyzed according to the changes of tool diameter and cutting conditions such as cutting speed. feed rate, depth of cut. And an examination was performed for the shape and surface illumination of machining surface according to the changes of machining conditions. Based on these micro machining conditions, micro square pillar, cylinder shaft. thin wall with high aspect ratio, and micro 3-D structures such as micro gear and fan were manufactured.

  • PDF

Cutting Characteristics of Micro grooving by Cutting Environments in High Speed Machining using Ball End Mill (미세홈 고속가공시 절삭유제 공급방식에 따른 가공성 평가)

  • 배정철;정연행;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.172-175
    • /
    • 2002
  • High speed machining is one of the most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when machining of micro groove in high speed machining a severely thermal damage was generated on workpiece and cutting tool. Generally, the cutting fluid is used to improve penetration. lubrication. and cooling effect. In order to rise the performance of lubrication. it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive. Therefore, the compressed chilly air with oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HrC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effect of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool lift of carbide tool coated TiAlN with compressed chilly air mist cooling was much longer than that of the dry and flood coolant when cutting the material.

  • PDF

The Cutting Process Monitoring of Micro Machine using Multi Sensor (멀티센서를 이용한 마이크로 절삭 공정 모니터링)

  • Shin, B.C.;Ha, S.J.;Kang, M.H.;Heo, Y.M.;Yoon, G.S.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.144-149
    • /
    • 2009
  • Recently, the monitoring technology of machining process is very important to improve productivity and quality in manufacturing filed. Such monitoring technology has been performed to measurement using vibration signal, acoustic emission signal and tool dynamometer. However, micro machining is limited small-scale parts machining because micro tool is very small and weakness to generate signal in micro machining process. Therefore, this study has efficient sensing technology for real monitoring system in micro machine that is proposed to supplement a disadvantage of single-sensor by multi sensor. From experimental result, it was evaluated tool wear and cutting situation according to repetitive slot cutting condition and changing cutting condition, and it was performed monitoring spindle rpm and condition according to compare acceleration signal with current signal.

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

Machining of Micro Groove using Diamond Tool (다이아몬드 공구를 이용한 미세 홈 가공)

  • 임한석;김창호;김봉향;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.75-79
    • /
    • 1995
  • A cutting experiment using diamond tool was performed to make the die cabity which is composed of micro groove with mirror surface. Fine cutting depth was generated by the elastic recovery of the modified tool holder on the conventional M/C. Surface roughness and profile were investigated with cutting speed and depth and through the low cutting speed of 10mm/min, Rmax 0.005 .mu. m or less of machined surface could be achieved.

  • PDF

Development of the Micro Tool Dynamometer for Micro Machining (미세가공을 위한 마이크로 공구동력계 개발)

  • Kwon D.H.;Hwang I.O.;Kang M.C.;Kim J.H.;Kim J.S.;Ahn J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.217-218
    • /
    • 2006
  • This paper presents an investigation on the characteristics for new micro tool dynamometer by using the ultrahigh-speed air turbine spindle. Recently, the ultrahigh-speed micro flat endmilling has been investigated actively due to request of accuracy improvement and productivity of die and mould manufacturing. To perform efficient ultrahigh-speed micro flat endmilling, evaluation of ultrahigh-speed machinability must be studied preferentially and it can be identified by investigation of cutting force. The cutting forces in ultrahigh-speed micro flat endmilling can be measured by micro tool dynamometer. But general dynamometer has low natural frequency and so is improper for measuring very high frequency cutting forces in ultrahigh-speed micro flat endmilling. In this study, the micro tool dynamometer which has very high natural frequency is newly designed.

  • PDF

Elliptical Vibration Cutting with Variable Trajectory for Ultra-precision Micro-Machining (초정밀 미세가공을 위한 궤적 변화에 따른 타원 궤적 진동 절삭)

  • Kim, Gi-Dae;Loh, Byoung-Gook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.11
    • /
    • pp.52-58
    • /
    • 2007
  • A cutting device capable of generating various shapes of the cyclic elliptical trajectory of a cutting tool was proposed and micro v-grooving experiments were performed to investigate the characteristics of elliptical vibration cutting (EVC). The proposed cutting device is comprised of a pair of parallel piezoelectric actuators with which harmonic voltages of varying phase difference and magnitude are supplied, creating various shapes of the elliptical tool path. The attributes of the elliptical locus involving the direction of the axis of an ellipse, the rotational direction and amplitudes of a trajectory were fine-tuned for stable operation of the EVC. The EVC characteristics performed with brass and copper revealed reduction in the cutting resistance and suppression of burr formation, resulting in the enhancement of form accuracy of machined micro-features. While the effect of the EVC increases with the increase of excitation frequency and the amplitude, it is found that a change in the cutting force decreases as the amplitude of an elliptical locus increases.

Mechanical Machining of Prism Pattern (프리즘 패턴의 기계적 절삭 가공)

  • Yoo Y. E.;Hong S. M.;Je T. J.;Choi D. S.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.71-75
    • /
    • 2006
  • In recent, various shapes of pattern in micron or nano scale are adapted in many applications due to their good mechanical or optical properties. Light guide panel (LGP) of the LCD is one of important applications for micro pattern and micro prism shape is one of the typical patterns. The size of the surface patterns in most applications is decreasing to the order of micron or even under micron. On the other hand, the area to be patterned keeps enlarging. These two trends in patterned products require tooling micro patterns on large surface, which has still many technical problems to be solved mainly due to pattern size and the tooling area. In this study, we fabricated prism shape of patterns using diamond cutting tool on some metal core and plastic core like PMMA. Some cutting conditions were investigated including cutting force, cutting depth and speed for different core materials.