Catalytic combustion is one of the suitable methods which is applicable to micro heat source due to high energy density and no flame quenching. And hydrogen can be oxidized at room temperature with platinum catalyst. So hydrogen-fueled micro catalytic combustor with platinum catalyst can be good and easy-handling heat source for another micro devices. In this work we focused on general catalytic combustion characteristics of hydrogen-air premixed gas in 10mm scale catalytic combustor for the further application to micro scale. Platinum was coated on dense ceramic monolith which can be installed in simple-structured catalytic combustor. We investigated the effect of flow rate, heat loss and platinum percentage in catalyst-coated monolith on catalytic combustion performance by temperature distribution in the combustor. By those results we confirmed catalytic reactivity and estimated reaction area. And we simulated micro scale catalytic reaction by sliced monolith. The results of this work will be important design factors for micro scale catalytic combustor.
Transactions of the Korean Society of Mechanical Engineers B
/
v.29
no.1
s.232
/
pp.55-62
/
2005
Combustion Characteristics and quenching criteria of micro combustor in various condition was exploited experimentally. Two different gases were used, and various geometric matrixes were considered to figure out quenching characteristic of micro combustor. The micro combustor studied in this study was constant volume, and has cylindrical shape. Geometric parameter of combustor was defined to be combustor height and diameter. The effect of height was exploited parametrically as 1 mm, 2mm and 3mm and the effect of diameter was parameterized to be 7.5mm and 15mm. Three different combustibles. (1) Stoichiometric mixture of methane and are, (2) Stoichiometric mixture of hydrogen and air and (3) Mixture of hydrogen and air with fuel stoichiometry of two were used. Pressure transition during combustion process was recovered. The ratio of maximum pressure to initial pressure responded favorably with the change of height of combustor and the initial pressure, the maximum pressure was also increased. The flame propagation was observed only when a specific condition was satisfied. From the experiment the condition that guarantees stable propagation of flame was tabulated. The tabulated results includes criteria of quenching according to combustor height, combustor diameter, species of fuel and initial pressure.
Journal of the Korea Institute of Military Science and Technology
/
v.24
no.3
/
pp.309-316
/
2021
In this paper, the electrical power output of the micro-combustor thermophotovoltiac(TPV) system was analyzed. The system consists of a micro-combustor, photonic crystals(PhCs), and photovoltaic cells(PV cells). The system has a micro-combustor that can achieve over 1,000 K surface temperature by consuming 2.5 g/h hydrogen fuel. Also, this system incorporates current state-of-the-art PhCs surfaces(2D Ta PhCs and Tandem Filter) to increase electrical power output. In addition, InGaAsSb PV cell, which bandgap is 0.55 eV, was applied to convert a wide range of radiative energy. The performance analysis shows that a single micro-combustor TPV system can produce 0.4 W ~ 27.7 W electrical power with the temperature change of emitter(900 K ~ 1,500 K) and PV cell(250 K ~ 400 K).
Transactions of the Korean Society of Mechanical Engineers B
/
v.27
no.1
/
pp.39-45
/
2003
As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.
A theoretical and experimental study on the combustion process in a constant volume micro combustor is described. Unlike in a macro scale constant volume combustor, the heat loss to the wall plays a major role in flame propagation in a micro micro combustor. In order to analyze the effect of heat loss on combustion phenomena, pressure transition from ignition was measured. A number of cylindrical micro combustors with different diameter and depth were used for experiment to study the effect of length scales and shape factor. The diameter of combustor ranged from 7.5mm to 22.5 mm and the height of cylinder was from 1mm to 4mm. Initial pressure was also varied for the experiment. The diagnostic methods were severely limited due to the size of the apparatus and uncertainties of certain quantities to be measured in a small-scale environment. An analytical method to derive physical quantities that are essential for performance prediction from the pressure measurements is described.
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2008.03a
/
pp.828-836
/
2008
To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.
Journal of the Korean Society of Propulsion Engineers
/
v.7
no.4
/
pp.27-32
/
2003
The Performance of micro combustor in various condition was exploited experimentally. Various geometric conditions of combustor were considered to figure out the performance of micro combustor. The micro combustor studied in this study was constant volume with cylindrical shape. Geometric parameters of combustor were defined to be combustor height and diameter. The effect of height was exploited parametrically with the size of 1mm, 2mm and 3mm. The effect of diameter was observed parameterized with 7.5mm and 15mm. Three different combustibles or Stoichiometric mixture of methane/air, hydrogen/air were used. Pressure transition during combustion process was recorded. The maximum pressure by combustion responded favorably with the change of height of combustor and the initial pressure. The flame propagation was visulized using Schlieren method. The flame propagation within combustor was observed when specific conditions such as combustor height and initial pressure over critical value was satisfied.
A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.
A micro cyclone combustor was developed to be used as a component of mobile power generator (MPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately to prevent a flash-back. The flame shape stabilized inside the micro cyclone combustor was visualized experimentally and the flow field and the combustion characteristics of the combustor were investigated numerically. The global equivalence ratio (${\Phi}$), defined using the fuel and air flow rates, was introduced to examine the overall flow and flame features of the combustor. The flame stabilization mechanism could be well understood using the velocity distribution inside the combustor. For only non-reacting case, it was found that a weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$ < 1.0. It was also found that small regions that have a negative axial velocity exist near the fuel injection ports for both of non-reacting and reacting case. It was identify that a flame front was stabilized at the negative axial velocity regions near the fuel injection ports.
Transactions of the Korean Society of Mechanical Engineers B
/
v.31
no.12
/
pp.1042-1047
/
2007
A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio ($\Phi$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$<1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.