• 제목/요약/키워드: Micro Cement

검색결과 320건 처리시간 0.028초

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Mechanical Properties of Hydrated Cement Paste: Development of Structure-property Relationships

  • Ghebrab, Tewodros T.;Soroushian, Parviz
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.37-43
    • /
    • 2010
  • Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.

시멘트 재료의 수밀성에 대한 스테아르산의 영향 (Effects of Stearic Acid on the Watertightness Properties of the Cementitious Materials)

  • 라승현;강현주;송명신
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.365-371
    • /
    • 2009
  • It is well known that the properties of concrete such as the compressive strength, water permeability, water tightness and durability are affected by micro-structure in hardened cement paste. Especially, for durability of concrete, watertightness of cementitious materials is the most critical property among various properties. Recently, many types of materials as organic and/or inorganic materials are used for watertightness of concrete. In this study, The effect of Stearic Acid at $0.5\;wt%{\sim}3.0\;wt%$ adding ratios on the hydration and watertightness property of cement were investigated. And we also discussed the changing of microstructure in hardened cement paste by addition of Stearic Acid. Cement paste with Stearic Acid showed improvement of watertightness by reducing of cement total pore volume and decomposition of Stearic Acid.

개별요소법을 이용한 시멘트 혼합토의 수치모델링 (Numerical Modeling of Soil-Cement based on Discrete Element Method)

  • 정상국
    • 한국지반신소재학회논문집
    • /
    • 제15권4호
    • /
    • pp.33-42
    • /
    • 2016
  • 기존 개별요소해석은 암석과 조립재료를 대상으로, 미시거동 분석과 응용을 위한 입상체 역학 및 관련 수치모델의 개발 차원에서 수행되었으나, 시멘트 혼합토(soil-cement)의 본딩 효과를 고려한 분석은 미흡한 것으로 확인되었다. 본 연구에서는 기존의 한계성을 극복하기 위하여 개별요소법 수치모델 프로그램 $PFC^{3D)}$을 이용한 시멘트 혼합토의 본딩 효과 및 실내시험 결과와의 분석을 수행하였다. 시멘트 혼합토에 대한 실내시험은 재령일을 고려한 일축압축강도시험과 시멘트 함유량에 따른 일축압축강도시험을 수행하였으며, 각 실내시험 조건에 적합한 개별요소해석을 수행하였다. 본 연구결과, 개별요소법은 지반공학적 측면에서, 혼합토의 본딩 효과에 대한 미시적 거동(micro behavior) 및 전체적 거동(macro behavior)의 예측뿐아니라, 수치시험실(numerical laboratory)로서 활용될 수 있음을 확인할 수 있었다.

터널 보강용 고성능 침투 주입재 연구개발 (Development of New Micro-Cement Grouting Materials for Tunneling)

  • 임유진;이강호;김형겸;홍창수;안준희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1559-1570
    • /
    • 2008
  • A new grouting material named 3S is developed that can be used effectively for reinforcing cut surface of weathered rock in processing of tunneling. The new material is composed of mostly micro slag cement and general Portland cement, but the material is foundered again upto $8,000\;cm^2/g$ of specific area so that it can be easily infiltrated in to the ground. For verifying technical and engineering quality of the material several laboratory tests with specially designed test apparatus were performed including compression tests, infiltration tests and resonant column tests. It was verified that the newly developed grouting material at early age of 1 or 3 days generates 200~1500% higher compressive strength and 400~560% larger elastic modulus than those of the LW(LW-1) or micro-cement(LW-2) grouting materials in the market. In addition, the new 3S grouting material could be so easily infiltrated into the model ground in the lab tests that it produces 4 times larger grouted roots in average compared to the usual water glass type grouting material(LW-1). Thus, it can be said that the newly developed grouting material can effectively prevent inflow water into tunnel compared to LW grouting materials.

  • PDF

시멘트 비접착 인공 고관절의 주대 형상 최적 설계 (Optimal Design of Stem Shape for Artificial Hip Prosthesis with Unbonded Cement Mantle)

  • 최돈옥;윤용산
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.932-938
    • /
    • 2001
  • This study is concerned with the shape optimization of stem for the artificial hip prosthesis with unbonded cement mantle. The artificial hip prosthesis with unbonded cement mantle allows a stem to slip on cement mantle because of polished stem surface. Unbonded cement mantle type has several advantages compared with bonded cement mantle type, for example, small micro motion, preventing stress shielding and so on. In this study, 2-dimensional axisymmetric model was developed with considering characteristics of unbonded cement mantle. Moreover, optimal shape of stem was obtained by using feasible direction method. The objective of this optimization is maximizing supported vertical loading. The slip motion and stresses of stem, cement mantle and bone is used for constraints. The optimal shape which obtained by this study has slope of 0.15 in proximal part and maintains the width about 5mm in distal part In addition, simplified 3-dimensional analysis which applying optimal shape is carried out. The result of 3-dimensional analysis showed that optimal shape has some advantages for cement mantle stress. However, more realistic 3-dimensional analysis which including bending effect, complex geometries etc. is needed in further research.

  • PDF

Effect of casein phosphopeptide-amorphous calcium phosphate on fluoride release and micro-shear bond strength of resin-modified glass ionomer cement in caries-affected dentin

  • Agob, Jamila Nuwayji;Aref, Neven Saad;Al-Wakeel, Essam El Saeid
    • Restorative Dentistry and Endodontics
    • /
    • 제43권4호
    • /
    • pp.45.1-45.11
    • /
    • 2018
  • Objectives: This study was conducted to evaluate fluoride release and the micro-shear bond strength of resin-modified glass ionomer cement (RMGIC) in casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-remineralized caries-affected dentin (CAD). Materials and Methods: Exposed dentin surfaces of 30 human third molar teeth were divided into 2 equal groups for evaluating fluoride release and the micro-shear bond strength of RMGIC to CAD. Each group was subdivided into 3 equal subgroups: 1) control (sound dentin); 2) artificially demineralized dentin (CAD); 3) CPP-ACP remineralized dentin (remineralized CAD). To measure fluoride release, 15 disc-shaped specimens of RMGIC (4 mm in diameter and 2 mm in thickness) were bonded on one flat surface of the dentin discs of each group. Fluoride release was tested using ion chromatography at different intervals; 24 hours, 3, 5, 7 days. RMGIC micro-cylinders were built on the flat dentin surface of the 15 discs, which were prepared according to the assigned group. Micro-shear bond strength was measured after 24 hours water storage. Data were analyzed using 1- and 2-way analysis of variance and the post hoc least significant difference test (${\alpha}=0.05$). Results: Fluoride detected in solutions (at all intervals) and the micro-shear bond strength of RMGIC bonded to CPP-ACP-remineralized dentin were significantly higher than those bonded to artificial CAD (p < 0.05). Conclusions: Demineralized CAD consumes more fluoride released from RMGIC into the solution for remineralization than CPP-ACP mineralized dentin does. CPP-ACP increases the micro-shear bond strength of RMGIC to CAD.

ASPHALT와 CARBON BLACK으로 처리(處理)된 고내구성(高耐久性) 포틀랜드시멘트의 수화특성(水化特性) (The Hydration Characteristics of High-Durable Portland Cement Treated with Asphalt and Carbon Black)

  • 조헌영;김희락;홍원표
    • 공업화학
    • /
    • 제3권1호
    • /
    • pp.148-155
    • /
    • 1992
  • 콘크리트의 내구성을 향상시키는 기존의 공법과는 다르게, 시멘트 입자 표면에 아스팔트 막(膜)을 부분적으로 형성시킨 후 카본블랙을 처리(處理)하여 콘크리트의 전반적인 내구성(耐久性)을 현격히 향상시킨 고내구성(高耐久性) 포틀랜드시멘트(ACTPC)의 수화반응(水和反應) 특성(特性)을 X-Ray, SEM, 전도열량계 등을 사용하여 조사한 결과는 다음과 같다. ACTPC가 물과 접촉하면 발수성을 나타내는 아스팔트 막(膜)은 시멘트 입자(粒子)와 물의 접촉 및 시멘트 입자(粒子)로부터 각종 이온들의 용출(溶出)을 방해하여 초기(初期) 수화반응(水和反應)이 억제되지만, 카본블랙은 결정핵 역할을 하므로 일정기간이후의 수화반응(水和反應)을 촉진한다.

  • PDF

경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성 (Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate)

  • 문규돈;최영철
    • 콘크리트학회논문집
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2015
  • 시멘트를 대체하여 고로슬래그 미분말을 건설재료로 대량으로 활용하기 위해서는 잠재수경성을 향상시켜 조기강도를 개선시킬 수 있는 적절한 활성화제가 필요하다. 이 연구에서는 경석고와 황산나트륨을 이용하여 하이볼륨 고로슬래그 시멘트의 수화특성에 대한 연구를 수행하였다. 수화특성을 평가하기 위해 고로슬래그 미분말을 전체 바인더의 80%로 고정하였으며, 나머지 20%를 시멘트와 활성화제로 구성하였다. 경석고와 황산나트륨의 치환율(1~7%)에 따른 응결, 압축강도, 미소수화열 및 미세구조 특성을 시멘트만을 사용한 경우와 비교하여 분석하였다. 이 연구에서는 경석고와 황산나트륨을 활성화제로 사용한 경우, 하이볼륨 고로슬래그 미분말의 조기 수화특성을 향상을 위해 필요한 $SO_3$ 함량을 전체 바인더 중량대비 약 3~5% 제안하였다.

실내모형시험을 통한 OPC와 친환경 MIS 그라우트의 지반 침투성능 분석 (Analysis of Permeation Efficiency in Soil for OPC and Non-Pollution MIS Grouts by Laboratory Model Test)

  • 안정호;임희대;최동남;송영수
    • 자원환경지질
    • /
    • 제45권3호
    • /
    • pp.307-315
    • /
    • 2012
  • 본 연구에서는 보통 포틀랜드 시멘트 OPC(Ordinary Portland Cement)와 MIS(Micro-Injection Process System) 공법에서 사용하고 있는 마이크로 시멘트의 지반 침투성능을 평가하기 위해 실내모형시험을 수행하였다. 이를 위해 그라우트 주입을 일정한 방법으로 재현할 수 있는 가압침투주입장치를 제작하였으며 공시체 제작방법을 마련하였다. 물시멘트비를 5:1에서 1:1까지 변화하여 주입시험을 수행한 결과 물시멘트비가 증가함에 따라 침투성능이 선형적으로 증가하였으며 주입성능을 비교하면 상대적으로 비표면적이 큰 MIS가 OPC보다 동일한 배합비에서 침투성능이 우수한 것으로 나타났다. 특히 물시멘트비가 2:1~1:1의 부배합에서 OPC의 침투성능이 매우 낮은 것으로 관찰되었다. 또한 침투량과 주입시간과의 관계곡선을 hyperbolic으로 모델링하여 예측치를 산정하고 이를 측정치와 비교한 결과 그라우트 성능평가에 대한 hyperbolic 모델의 잠재력이 검증되었다.